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André DeHon, Professor of Electrical and Systems Engineering
University of Pennsylvania



Accelerating FPGA Developments from C to Bitstreams by Partial Reconfiguration

COPYRIGHT

2023

Yuanlong Xiao



ACKNOWLEDGMENT

First and foremost, I would like to thank my advisor, Prof. André DeHon. I have been very
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ABSTRACT
Accelerating FPGA Developments from C to Bitstreams by Partial Reconfiguration

Yuanlong Xiao

André DeHon

Divide-and-conquer and incremental compilation strategies are widely used in software com-

pilations. The divide-and-conquer means that separate source files are compiled indepen-

dently by multi-threads to objectives, which are linked together to an executable-format file,

while incremental compilation means that software tools only need to re-compile modified

source files and quickly re-link the objectives. To enable these strategies for FPGAs, this

dissertation presents an open-source framework called PRflow which can speed up the com-

pilation times by an order of magnitude. PRflow supports different optimization levels to

make better trade-offs among compile-time, area, and performance. -O0 (PRflow RISCV)

maps applications to a cluster of on-chip RISC-V cores within seconds for quick verifica-

tion and debugging. -O1 (PRflow) compiles the separate parts of an application to partial

FPGA bitstreams for different partial reconfigurable regions on the chip. Separate parts

can be compiled in parallel within 24 minutes. The interconnections between separate parts

can be set up by sending configuration packets to configure a network-on-a-chip (NoC)

without re-routing physical wires. -O2 (PRflow DW) supports inter-connection customiza-

tion with a fixed page-size overlay on top of a commercial FPGA to meet high inter-page

bandwidth requirements, improving the performance by up to 10× compared with -O1. -

O3 (PRflow HiPR) supports overlay customization for arbitrary inter-page throughput and

various page size requirements with similar incremental compile time to -O1 and -O2. HiPR

extracts the interconnect information among separate sub-functions and generates a cus-

tomized overlay with PR regions defined. Users can perform quick incremental compilation

for dedicated sub-functions at the cost of an acceptable one-time overlay compilation over-

head. -O3 compiles applications with the most aggressive optimization strategies similar to

commercial tools.

iv



We demonstrate the PRflow framework on the Xilinx Alveo-U50 data-center card with

an xcu50-fsvh2104-2-e FPGA chip (16nm FinFET) by mapping Rosetta HLS complete

benchmark set. PRflow can accelerate the compilation times from 2–3 hours (state-of-the-

art Vitis) to 10-24 minutes.

We expect PRflow based on PR technique to become an important compilation strategy

as the increasing scales of FPGAs greatly slow down the compile times.
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Chapter 1

Introduction

1.1 Thesis

By applying the divide-and-conquer strategy to FPGA compilation, the compilation time

is reduced from hours to minutes. With modern partial reconfiguration techniques, appli-

cations can be separated into several small blocks connected by latency-insensitive links

according to directives/pragmas in high-level languages. The separated blocks are com-

piled in a divide-and-conquer manner: separate parts of the design are compiled in parallel;

modified parts can be recompiled independently in the following incremental refinements.

1.2 Motivation

Over the past decades, Field-Programmable Gate Arrays (FPGAs) have been widely used to

accelerate diverse applications for image processing [24, 60], machine learning [40, 25], data

analysis [18, 25], and others. The hardware programmable features allow the developers

to customize the application instances with more flexibility [3, 20]. However, the coding

difficulty and long compilation time hinder the wide deployment of FPGAs. Versatile tools

have been released by vendors, such as SDSoC [129], Vitis [131], and OpenCL [54], to

relieve users from arcane hardware languages (Verilog or VHDL) by supporting high-level

languages (C/C++). While these solutions can improve coding efficiency, the most time-

consuming steps (e.g., placement, routing, and bitstream generation) are still unavoidable

to compile the High-level source code to FPGA executable bitstreams.
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Figure 1.1 shows the compilation time breakdown to map the Rosetta HLS bench-

marks [146] to Alveo U50 data center FPGA card [124]. It takes hours for one edit-

compile-debug loop, and the HLS step only occupies 2–12% of the total compile time.

For larger designs mapped to FPGAs on the cloud, the compilation time can be 10+ hours

[13, 110, 70, 21]. For novices, the long compile time may frustrate the developers and make

FPGAs unattractive; for experts, the long cycles limit the design space and could finally

lead to sub-optimal solutions within a short time-to-market window.
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Figure 1.1: Rosetta HLS Benchmark Compilation Time

The reason behind this long compile time is that the state-of-art EDA tools try to

co-optimize and compile the whole design in a monolithic way to get high-quality and

area-efficient solutions. Even small changes force the EDA tools to recompile the entire

design. As the scale of the application becomes large, EDA tools must solve large mapping

problems. In contrast, modern software compiles in a sharply different way. When a

C++ application is compiled for the first time, separate files can be compiled in parallel,

shown in Figure 1.2(a). The compile time is determined by the worst compile time from

all the separate blocks plus the linkage time shown in Figure 1.2(b). For every refinement
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iteration later, the software compiler only re-compiles the modified function(s) and re-links

the objective(s) again. The dashed blue shape in Figure 1.2(a) shows the case when only

function d is refined.

This dissertation describes a divide-and-conquer strategy to compile separate FPGA

blocks to speed up the process from C++ sources to FPGA executable bitstreams. Sepa-

rate compile is partially supported by vendor tools by out-of-context RTL synthesis [138]

but is not supported directly for placement, routing, and bitstream generation. The Par-

tial Reconfiguration (PR) is a potential technique to achieve our divide-and-conquer goal.

Specifically, we can predefine a cluster of non-overlapping layout blocks on an FPGA chip,

and map separate functions at C-level to these physical locations at the layout level. This

process is non-trivial as hardware expertise is required to use PR well, which is not eas-

ily accessible for software programmers. Moreover, we note software linkage for CPUs

cannot be trivially applied to FPGAs due to the fundamental difference between FPGA

architectures and software models. C++ objectives are linked together in a temporal do-

main, where the machine code can be fetched by CPUs according to the instruction address

at a different time for execution, while FPGA separate blocks are connected in a spatial
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Figure 1.3: Hardware Compile Strategies

domain, where different blocks communicate with each other concurrently for execution.

Therefore, this dissertation proposes a framework that not only automates the process from

C++ to separate PR bitstreams but also provides several spatial linkage solutions, such

as packet-switched network-on-a-chip (Chapter 3), direct wires (Chapter 4), and dedicated

links (Chapter 6). These frameworks make the best use of existing commercial tools to

reduce engineering efforts and guarantee the quality of results.
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1.3 Divide-and-Conquer FPGA Compilation

1.3.1 PRflow

To compile FPGA in a divide-and-conquer manner, we first developed a framework called

PRflow, which uses partial reconfiguration and a packet-switched network-on-a-chip (PSNoC)

to isolate design components for separate compilation, dividing the FPGA capacity into

a number of independent, partial reconfiguration regions. Components (IP blocks, com-

putational operators) can be compiled into partial reconfigurable (PR) regions indepen-

dently. The packet-switched network provides the communication linking that allows the

independently-compiled blocks to interact. Before mapping applications, an overlay with

a cluster of PR regions is compiled with a PSNoC to connect these PR regions together,

as shown in Figure 1.3(a). With this fixed overlay, separate blocks of certain applications

can be compiled in parallel. Since there are several steps to compile a C file to a par-

tial bitstream (HLS, RTL synthesis, physical implementation, and bitstream generation),

we abstract these steps and dependencies as jobs with Sun Grid Engine [94] on our own

web of servers or with Slurm [43] on Google Cloud. For the compile time, PRflow can

decrease the compilation time from hours to 24 minutes. However, two issues come along

with PRflow: 1) the performance (execution time) of an application can be degraded by the

limited inter-page communication bandwidth (the IO bandwidth between the NoC and a

page); 2) separate blocks at C-level cannot be mapped to the fixed PR regions unless they

are small enough to fit the PR region size.

1.3.2 PRflow DW

For operators with high bandwidth requirements, the input/output data need to be timely

demultiplexed/multiplexed before communicating with the PSNoC. For example, operator

a has two output ports, but the page has only one input/output with the PSNoC in Fig-

ure 1.3(a). This IO-bottleneck can potentially degrade the performance. To address the

performance degradation issue, we need to increase the inter-page bandwidth while preserv-

ing the quick separate compile. From Figure 1.4(a), we note that only a small portion of
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the interconnect resource is used by the PSNoC. However, increasing the datawidth of the

PSNoC to increase the bandwidth is not area efficient, since the bandwidth requirements

between pages can be unbalanced. For example, it is possible that only page1 and page7

need high bandwidth. Therefore, we develop an overlay with a grid of PR regions connected

by pre-routed wires between adjacent PR regions, shown in Figure 1.4(b). We pre-routed as

many wires as possible under a frequency constraint. A coarse-grain placer and router are

deployed to find a feasible placement for all the operators at C-level with two constraints:

1) PR regions should have enough resources to map the operators; 2) the stitched wires

between adjacent PR regions are sufficient to construct pipeline routes to connect opera-

tors together. As the scale of the operators is small enough compared with bit-wise level

netlist placement, it takes a negligible amount of time to find the placements. Since all

the operators are still compiled in parallel, the application will continue to benefit from a

short compile time. Operators are connected according to their requirements. Therefore,

the IO bottleneck can be addressed and the performance can be improved. We call this

framework PRflow DW (PRflow with Direct Wires) shown in Figure 1.3(b). For each

page, PRflow DW compiles the mapped operator along with the route-through pipelined

wires. As all the pages can be compiled independently on the cloud, we can still benefit

from the divide-and-conquer strategy while improving performance.
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1.3.3 PRflow RSICV

It is common that developers may want to quickly get a functionally-correct application to

run immediately as a baseline for later refinement and optimizations. However, the separate

blocks at C-level cannot be mapped to the fixed PR regions unless they are small enough to

fit the PR region size. This may leave some burden on the users to set up an immediately-

executable application. Also, FPGA maps computation spatially, and resource consumption

can blow up when the parallelism factor is large (e.g., unroll factor). However, users need

to get quick returns during the initial verification stage, and 20 minutes of compilation time

is still too long. To address this size-fit issue, we extend the PRflow overlay with RISC-

V [118, 92] soft cores support (PRflow RISCV), shown in Figure 1.3(c). Specifically, we

pre-implement RISC-V cores on all the PR regions connected by the NoC. For the initial

run, developers can map separate C blocks to different RISC-V cores within seconds. PRflow

and PRflow RISCV are not exclusive: developers can map all the operators first to RISC-V

cores and incrementally map some operators to RISC-V cores and the other operators to

hardware logic in PR regions. This hybrid implementation is meaningful since RISC-V

cores can also act as probe modules similar to Integrated Logic Analyzer (ILA) [130]. We

can map one operator we are interested in to the RISC-V core and use our support feature

(hardware $printf) to send the debugging information back to the host for analysis on the

run. Also, we can flexibly redirect data from the producer operator to one RISC-V core

which can analyze the redirected information and send them continually to the consumer

operator.

1.3.4 PRflow HiPR

PRflow with Direct wires (Figure 1.3(b)) and PRflow with RISC-V soft cores (Figure 1.3(c))

can partially solve the bandwidth and size issues of PRflow (Figure 1.3(a)) respectively.

However, PRflow DW still suffers from fixed-page issues and PRflow RISCV cannot fully

exploit the hardware parallelism. Therefore, we present our final solution PRflow with

HiPR (High-level Partial Reconfiguration). PRflow HiPR can solve both issues with ac-

7



ceptable initial compile time overhead shown in Figure 1.3(d). Instead of pre-compiling

a fixed overlay, HiPR can floorplan individual locations for all the operators that are la-

beled as Partial Reconfiguration Function by pragma. Developers can define elastic ratio to

intentionally create larger shapes for certain operators, which may be tuned up in the fol-

lowing developing steps. When compiling the application for the first time, HiPR compiles

each operator function in parallel from C to a post-RTL-synthesis netlist. Using resource

requirements from RTL synthesis, HiPR automatically generates a design-specific overlay

with a static region and custom target PR regions. Next, when the user only modifies the

target function(s), HiPR only re-compiles the modified function(s). If the user needs to

change the interconnection between different operators or add more PR-target functions,

HiPR will automatically redefine the floorplan for the static and PR regions. Therefore,

custom overlays can be generated without human intervention for different applications.

Both the size of PR regions and the wires between different PR regions can be customized

according to the requirements. With HiPR, more developers can benefit from quick PR

compilations without bottom-level hardware knowledge and expertise.
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Figure 1.5: Key Results

8



1.3.5 Key Results and Summary

This dissertation applies the divide-and-conquer strategy to FPGA compilations. With

different frameworks, we provide various compilation options similar to software. As shown

in Figure 1.5: PRflow RISCV (-O0) can run the application within seconds of compilation

time and get a performance similar to X86 Emulation; PRflow can deliver good performance

with 10–20 minutes of compilation time; PRflow DW (-O2) can improve the performance

by providing more inter-page bandwidth; PRflow HiPR (-O3) can customize an application-

specific overlay for incremental compilation with an acceptable overlay compilation overhead

without performance loss. For the later incremental compilation, it takes the same order of

compilation time as -O1 and -O2.

1.4 Dissertation Overview

The rest of this dissertation is organized as follows.

Chapter 2 presents the necessary background of modern reconfigurable device architec-

tures and normal compilation flow. Next, the partial reconfiguration technique, the main

method this dissertation leverages to speed up the compilation time, is introduced. Fol-

lowing are the prior works of different compilation acceleration methods. Finally, floorplan

algorithms for partial reconfiguration are summarized, which motivates the lightweight sim-

ulated annealing algorithms for our HiPR framework.

Chapter 3 details the initial implementation and evaluation of the divide and conquer

compilation strategy. It begins by elaborating on the key idea of using separate partial

reconfiguration blocks and a Network-on-a-chip to accelerate the compile time for FPGAs,

followed by the hardware library to construct the FPGA overlay. Then, it characterizes

how vendor tools behave under different contexts, which determines some parameters for

the overlay, such as the bus width of the NoC, PR page numbers, PR page size, etc. Next, it

explains how the tool flow is constructed by leveraging existing tools, such as Makefile [42],

Sun Grid Engines [94], Slurms on Google cloud [43], etc. The preliminary results in this

chapter show that PRflow can accelerate the FPGA compilation by 6.4–10.9×. Finally, the

9



IO bottleneck and fixed-page-size issue are discussed.

Chapter 4 explains how the IO bottleneck is addressed by using direct wires overlays.

The IO workload and compute workload are profiled over different benchmarks. New hard-

ware libraries will be introduced to show how direct wires overlay can reduce the area

overhead compared with PRflow overlay. A simple coarse-grain placer and router are ex-

plained to automate the operator assignments. The experiments in this chapter will show

how the performance is improved by addressing the IO bottleneck.

RISC-V soft cores are presented in Chapter 5. Both the hardware and software libraries

are proposed to show how RISC-V supports software libraries commonly used by FPGA

HLS code with low memory consumption. A case study shows how RISC-V can perform

quick functionality verification and on-chip debugging as a replacement for Integrated Logic

Analyzer (ILA).

Chapter 6 introduces the final solutions to the IO bottleneck and fixed-size issues. A

lightweight Simulated Annealing (SA) method is explained. The evaluation shows SA

method can generate similar-quality of results to the Mixed-Integer Linear Programming

(MILP) method with order-of-magnitude less execution time. The experiments of mapping

Rosetta benchmarks show HiPR can accelerate the compile time without losing performance

with an acceptable one-time compile time overhead.

Chapter 7 presents some meaningful future works. Chapter 8 highlights the main points

of the dissertation and concludes.

1.5 Dissertation Contributions

Particularly, we made the contributions in this dissertation as follows:

• We introduce the idea of separate compilations and a linking network to apply the

divide-and-conquer compilation strategy to FPGAs to accelerate the FPGA com-

pilations. An FPGA compile framework is developed to abstract the FPGA chip

as separate blocks connected by a network-on-a-chip. Compared to state-of-the-art

vendor tools, this separate compile solution can accelerate the FPGA compilation by

10



6.4–10.9×. This part of the work is published in [123, 95] and released as open-source1.

• We show the linking can be mapped directly to the FPGA and compiled in parallel

with the computation. The routing capability in regions of the FPGA is profiled and

is related to packet-switched NoC bandwidth. It is demonstrated that the direct-wire

switch box routing can reduce the compilation time compared to monolithic design

mapping without sacrificing performance. We also show the potential to unify logic

and switch partial reconfiguration regions. This work is published in [120].

• We show how the same source code can be compiled to the FPGA regions or processor.

RISC-V soft cores are utilized and applied for quick on-chip functionality verification

and debugging. The software library to support streaming class by vendors are pro-

posed. This work is published in [122, 86].

• We bridge the gap between HLS and the partial reconfiguration technique by adding

a C-level PR pragma that signifies when a function should be allocated its own PR

region. Our open-source framework HiPR2 automates the flow from C/C++ to bit-

streams, enabling the software developers to use PR techniques without low-level

expertise. We demonstrate that automatically floorplanned, partial-reconfiguration

decomposed designs can support incremental compilation to reduce compile times by

evaluating HiPR with the full set of Rosetta benchmarks on the Alveo U50 card to

reduce compilation time by 3.5–7.6×. This work is published in [121].

1https://github.com/icgrp/pld2022.git
2https://github.com/icgrp/hipr.git
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Chapter 2

Background

Benefiting from the hardware-programmable features, FPGA developers can customize the

application instances more flexibly. However, FPGA compilation is intrinsically slow as it

stems from ASIC design flow, such as placement and routing. In a sense, the FPGA imple-

mentation problem is even more complex than ASIC since only fixed placement locations

and limited tracks of wires can be selected for placement and routing.

This chapter will present the background on which the rest of our work is based. If the

readers are familiar with the basic architecture of FPGAs, they can start from Chapter 2.2

2.1 FPGA Architecture

The traditional FPGA architecture is shown in Figure 2.1. Look-Up-Tables (LUTs) are

the most basic elements. A 4-LUT can be configured to map arbitrary 4-input Boolean

equations. The output of a LUT can be configured as combinational or sequential by a

multiplexer within the Configurable Logic Block (CLB). Through reconfigurable intercon-

nects, the CLBs plus interconnects architecture theoretically can map any logic. However,

as memory and multiplier are common enough in general computing, and it is not effi-

cient to use CLBs to map them, modern FPGAs also integrate Block RAMs (BRAMs)

and Digital Signal Processors (DSPs) inside. Leveraging these AISC-like IPs to map cor-

responding compute elements (memories and multipliers), both area efficiency and timing

can be improved.

In addition to these essential elements, modern commercial FPGAs have much more
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complex architectures. We will use the UltraSacle+ FPGAs from Xilinx (AMD) as an

example.
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Figure 2.1: Basic FPGA Architecture

Stacked-Silicon Device

The latest Xilinx FPGA devices provide Stacked Silicon Interconnect (SSI) technology,

enabling vendors to create reconfigurable devices with more capacity by stacking several

dies, called Super Logic Regions (SLR), on one package substrate. For example, the Alveo

U250 Data-center card contains 4 SLRs in a stacked style with SLR0 connected to SLR1,

SLR1 connected to SLR2, and SLR2 connected to SLR3. A silicon interposer (LAG LAG

tile in layout) is responsible for high bandwidth transfer between SLRs, but it can also add

more latency. Even though SSI can provide users with high-capacity devices, users still

need to carefully floorplan their design to avoid large data transfer between SLRs. This
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might affect the PR region definition in the rest of the work, which is the key technique we

use to accelerate the compilation.

URAM and HBM

Traditional FPGAs include BRAMs and Distributed RAMs for on-chip buffering. How-

ever, reconfigurable devices are processing more data at a greater rate. When hundreds

of megabytes of data need to be handled, external DDR memories are adopted, which in-

crease the complexity of the design and slow down the data transfer speed by the limited

off-chip bandwidth. UltraRAM is a new flexible memory, as every URAM block is a dual

synchronous port memory of 4,096 deep and 72 bits wide [126]. Cascading URAMs can

provide users with more than 500Mb lightweight and power-efficient on-chop buffers.

High Bandwidth Memory (HBM) is another type of large onboard memory that has 20×

(460GB/s) more bandwidth than DDR DIMMs. The HBM memory is basically 3D-stacked

synchronous dynamic random-access memory (SDRAM). For Alveo U50 [124], it has 8GB

HBM with 32 Pseudo Channels (PC), also called banks, which can independently access

256MB range at 14.375GB/s max theoretical bandwidth per bank. Configured properly,

the bandwidth between HBM and FPGA fabric can be up to 460GB/s (14.375GB/s*32).

This technique can enable users to integrate low bandwidth/watt compute modules into

one device.

Therefore, modern FPGAs are featured for high integration with more components

(HBM, PCIe, etc.), high logic capacity, and high clock frequency (900MHz IPs), which

can map versatile applications, including data processing, image processing, and machine

learning.

2.2 FPGA Compilation vs. Software Compilation

FPGA compilation flow is shown in Figure 2.2. Here we take Xilinx Vitis [131] flow as an

example. We usually develop our applications in high-level languages, such as C/C++. The

High-Level-Synthesis (HLS) tool parses the C/C++ code and synthesizes it into Hardware

Deception Language (HDL), such as Verilog or VHDL. If device-related IPs are generated
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Figure 2.2: Xilinx FPGA CAD Flow

(e.g., floating division/multiplication modules), some TCL files can be generated, guiding

the synthesis tool on initiating the IP instances later. Next, the Verilog/VHDL code is

compiled by the RTL synthesis tools (Vivado) to intermediate representatives, such as

a netlist of primitives. Closely coupled to the device and technology, these primitives

will be mapped to the different on-chip resources (LUTs, BRAMs, and DSPs). Different

vendors have different devices so that the same primitives can be mapped to different on-chip
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resources. Next, these on-chip resources will be physically optimized, placed, and routed

within layout resource constraints. Vendors now accept some constraints to guide their tool

to perform placement and routing better. However, most of the work is still conducted by

the CAD tool, usually by solving NP-hard problems with high complexity [119], which can

take hours to days.

Typically, FPGA compilation maps the entire design once, which is good for quality,

as compilers can perform cross-module optimizations. However, this also means compilers

are solving giant problems — millions of individual logic elements on modern data-center

FPGAs — for any changes. Due to the ASIC-like feature of FPGAs, the bitwise placement

and routing can be performed repeatedly with tiny local changes.

However, compilation for processors is typically fast. Historically, compiler developers

have intentionally eschewed non-linear algorithms to keep the compilation fast. Further-

more, software compilers do not need to deal with bit-wise spatial problems (placement

and routing), making the problems easy to solve. In addition, software compilers naturally

support incremental compilation well [14, 7]. For example, the C program is often written

in several separate files. Each file represents one sub-function. Therefore, these individual

files can be compiled separately and linked to make an executable file. If one sub-function is

changed, only the modified files are re-compiled and linked quickly to re-generate a new exe-

cutable file. Finally, software compilers also provide different optimization levels (-O0–-O3)

to support better trade-offs between compilation time and quality.

2.3 Partial Reconfiguration

Partial Reconfigure (PR) technique is widely supported in modern FPGAs, by which only

portions of the FPGAs need to be reconfigured while the rest of the FPGAs continues to

run [51, 134]. The bitstream loading time can be shortened as the size of the bitstream is

roughly proportional to the amount of the logic being reconfigured, which can be several

orders smaller (usually several kilobytes) than the complete bitstreams (usually hundreds

of megabytes). Conventional usage of PR includes bitstream loading time reduction, area

16



#2
#1

#6
#5

#4

FPGA

Clock
Region

Level-1 PR 
Region

#3
SLR 1

SLR 0

SLR 
Boundary

Level-2 PR 
Region

#7

Figure 2.3: Partial Reconfiguration Constraints – #1 is legal and recommended; #2 and #
3 are legal but not recommended as timing can be degraded across clock regions; #4 and
#5 are illegal since two PR regions cannot share a column of resources within the same
clock region; #6 is strongly not recommended as timing can be degraded and routing can
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reduction [117, 85, 83], and design specialization [35, 113]. For Xilinx flow, there are mainly

two constraints for PR region: 1) no overlapping area is allowed between two PR regions; 2)

one column of resources in one clock region cannot be shared by two PR regions. Figure 2.3

show different cases for PR region definitions: #1 is legal and recommended; #2 and #3

are legal but not recommended as timing can be degraded across clock regions; #4 and #5

are illegal since two PR regions cannot share a column of resources within the same clock

region; #6 is strongly not recommended as timing can be degraded, and routing can fail
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due to the limited number of connecting wires by LAGUNA cells.

Xilinx recently released Dynamic Function eXchange (DFX) [134, 139] with two essen-

tial features: 1) Hierarchical PR definition; 2) abstract shell design checkpoint. Hierarchical

PR means users can define sub-PR regions in a previously defined PR region without re-

compiling the logic outside of the previously defined PR region. In Figure 2.3, we can define

PR region #7 inside PR region #1 without re-compiling the other PR regions. Abstract

shell means an individual context design checkpoint for each PR region will be generated

for later implementation, which only contains logic and wires related to one PR region.

In contrast, one giant context design checkpoint will be generated for all the PR regions,

which contains logic and wires related to all the PR regions for previous PR without the

abstract shell technique [127]. Abstract shell technique is valuable to reduce the imple-

mentation time since loading the context design checkpoint for specific PR regions can be

timing-consuming [123].

Vendors tools provide interfaces to support logic mapped to manually defined PR re-

gions. However, defining PR regions and partitioning the RTL logic into separate PR logic

is a non-trivial step requiring bottom-level hardware expertise. We will build a high-level

interface that allows the users to define PR functions at the C level instead of at the hard-

ware Verilog level in Chapter 6. We abstract away the low-level details and relieve the

software users of tedious and error-prone work so that more software users can benefit from

the PR incremental compile for FPGAs to accelerate the edit-compile-debug cycle.

2.4 FPGA Compilation Acceleration

Various frameworks have been brought forward to accelerate the traditional FPGA compi-

lations. One path to faster compilation has been to pre-define overlay architectures for the

FPGA [11, 64, 115, 65, 66, 40, 144, 28, 80, 52]. Pre-mapping macro components have been

demonstrated to be effective to reduce FPGA compile time. HMflow [74, 75] exploited pre-

implemented hard macros (internally placed and routed), macro-level floorplan, and custom

routing to assemble DSP designs from System Generator by Xilinx [132]. As the macros
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already include hundreds to thousands of CLB slices, the coarse-grain placement for macros

is an order of magnitude simpler than bit-wise LUT-level placements. The custom router

can stitch these hard macros back together for fast mapping instead of aggressively optimiz-

ing for strict timing constraints. Just-in-Time Assembly of Accelerators (JITA) presents

overlays with different numbers of PR tiles (2×2 or 3×3) connected by the nearest neighbor

bus [81]. Each PR tile is coupled with a switch box that can route bus signals across dif-

ferent PR tiles. Each tile is sized at 9,600 LUTs, 360KB BRAMs, and 80 DSPs. Different

compute primitives (e.g., REDUCE, VMUL, MM, AVG, etc.) are implemented on all the

PR tiles, and the corresponding partial bitstreams are stored as executables in the Domain

Specific Language (DSL) Library. The interpreter can construct different accelerators by

loading different primitives into PR tiles and connecting these primitives with switch boxes.

Therefore, hardware compile time is replaced by bitstream loading time. Both HMflow and

JITA can accelerate compile time by pre-implement separate layout blocks. However, the

performance and area efficiency strongly rely on the matchup between the pre-compiled

primitives and target accelerators. These methods, in fact, sacrifice FPGA hardware flexi-

bility.

Dividing FPGA into separately managed physical regions is also explored in [12, 19, 21,

143, 63, 83, 85, 97, 144]. However, these works do not address compile time reduction or

support high-level synthesis from C. Cascade [104] and SYNERGY [70] both target accel-

erating FPGA compile time and improving FPGA developing experience. Cascade [104] is

an open-source framework that can compile Verilog code with unsynthesizable primitives

($printf or $finish) to many small pieces (subprogram). These subprograms can initially

be mapped to software and be executed in the form of simulation. The scheduler searches the

binary caches to find the FPGA bitstream for each subprogram. If the corresponding binary

can be found, the subprogram can be moved to FPGA fabrics for execution. Otherwise, the

controller will compile the subprogram into bitstream under the hood without interrupting

the existing program execution. The users only see the program execution runs immediately

and is accelerated over time, and finally, all the subprograms are offloaded into hardware.
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Cascade bridges the gap between software and hardware programming for FPGA develop-

ers. However, Cascade’s strategy is to hide the compilation time behind software simulation

rather than decrease the absolute compilation time. This does not help much for the incre-

mental scenario, where lengthy compilation for each case (usually many trial cases) is still

unavoidable. Moreover, the performance deteriorated by 3×, and the input source is still

Verilog, which has very different coding styles for software programmers. SYNERGY [70]

is a compiler/runtime-based solution based on Cascade [104] and AmorphOS [63], which

can transparently transform the Verilog program to a distributed-system-like intermediate

representation (IRs). These IRs can easily be executed either by software or native FPGAs.

Benefiting from extended Cascade and AmorphOS, SYNERGY can also perform workload

migration, hardware accelerator suspend/resume, and spatial/temporal multiplexing be-

tween different tenants. The evaluations show SYNERGY can offload computing instances

across a cluster of Altera SoCs or Xilinx FPGAs on Amazon F1 with the ability to suspend

and resume programs, which speeds up the virtualized performance within 3-4×. However,

SYNERGY does not solve the long compilation issue. As long as the scheduling is changed,

the whole FPGA chip needs to be recompiled monolithically, which greatly increases the

runtime overhead. Even though the recompiled bitstream caches can relieve the compile

time overhead, it does not decrease the compile time for the incremental compilation. Grig-

ore et al. [46] proposed a toolflow to automate the generation of partially reconfigurable

modules from the MaxJ language to bitstreams. However, the toolflow heavily relies on

GoAhead [29] and Xilinx ISE, which are incompatible with modern FPGA vendor tools,

and the compilation time is not considered. Seiba supports processor integration with com-

piled FPGA logic to accelerate the edit-compile-debug loop [116]. Rather than accelerating

the initial development and iterations before the design is suitable for hardware mapping,

Seiba supports iterative improvement after the design has been initially mapped. Mapping

an application to soft CPU cores on FPGAs provides a ramp-up solution from pure software

simulation to pure hardware implementation. This dissertation in Chapter 5 will show how

to use pre-compiled RISC-V [92] soft cores to achieve this goal.
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The recent Xilinx-released open-source work RapidWright [73], an updated version of

RapidSmith [76], supports manipulating design checkpoints from Vivado and is able to

seamlessly interact with Vivado for low-level modifications. RapidWright enables users to

perform more low-level manipulations on FPGA layout and makes many excellent works

possible [147, 48, 82, 143, 84, 68]. RapidStream [48] can accelerate the compile time by

leveraging RapidWright [73] to perform parallel compilation from HLS code to bitstreams.

The application is pre-divided into separate sub-functions linked by streaming interfaces,

which makes it possible to separately compile these sub-functions until post-placed&routed

netlists. However, to generate an FPGA executable bitstream, inter-block routing is still

needed to stitch the separate blocks together, which is hard to be performed in parallel. A

complete bitstream will be generated for FPGA execution, which may take 30 minutes to

one hour for modern data-center FPGAs. This inter-block routing and complete bitstream

generation may limit the compilation time speedup in practice.

2.5 Floorplan for Partial Reconfiguration

The Floorplan is the key to bridging the gap between RTL synthesis (generated by HLS

or manually prepared) and placement-and-route implementation, and there is a significant

body of literature on PR floorplanning [37, 106, 6, 87, 88, 30, 112, 90, 102, 5, 6, 107]. Taking

into account both the heterogeneous resource distributions and PR constraints for modern

FPGAs, many floorplanners use heuristic methods [8, 99, 111]. Bolchini et al. [8] propose

a floorplanner, based on an accurate model of the devices to find an optimal solution for

reconfigurable devices, which takes into account both heterogeneous resource distribution

and reconfiguration constraints. Simulated Annealing (SA) algorithm is adopted to explore

a reduced search space represented by sequence pair [89]. The wire length can be opti-

mized by 12–29% w.r.t [87]. A greedy floorplan method (Columnar Kernel Tessellation) is

proposed in [111] to reduce resource wastage. It takes into account PR resource wastage,

heterogeneous resource distributions, and reconfiguration time. The cost function is the

weighted summation of waste resources and the total Manhattan distance. The modules

21



with DSP and BRAMs have the priority to be placed. Columnar Kernel Tessellation can

reduce resource wastage. The case study shows it has less resource wastage compared with

[88]. A Genetic Algorithm (GA) is adopted in [100] to explore wider feasible solutions. Ex-

periments with the 20 largest MCNC benchmarks show 17% improvements on critical path

at the cost of 2% area and 8% runtime, compared with Xilinx’s early access partial recon-

figuration design flow. Analytic methods, such Mixed-Integer Linear Programming (MILP)

and Nonlinear Integer Programming (NLP), have recently been brought forward to generate

global optimal solutions [100, 101, 105, 91]. The MILP-based floorplanner [100, 101] can

find the global optimum, and the users can also change the objective functions with different

weights to total wire length, aspect ratio, and resource wastage. Rabozzi et al. aggregate

the FPGA device into coarse grain partitions according to the resource types to reduce the

design space. Mixed-integer linear constraints are adopted to guarantee no overlapping area

between two PR regions. Two compile strategies are proposed: [HO] (Heuristic-Optimal)

and [O] (Optimal). [HO] can find a feasible solution quickly, while [O] can find the global

optimal solution with a significantly long execution time when the scale of the problem is

large. FLORA [105] is another MILP-based floorplan tool that takes into account the more

realistic PR constraints and adopts a fine-grained model for modern FPGAs. While the

analytic (MILP) method can outperform the heuristic method with the ability to find the

global optimal solution, it suffers from a long execution time and poor scaling with problem

size. Hence, HiPR adopts the SA-based floorplanning algorithm to accelerate the compile

time, extending the SA by considering modern hierarchical DFX constraints (detailed in

Chapter 6).

2.6 Latency-Insensitive Circuits

Latency Insensitive Circuits (LIC) have been proven to have good timing performance

and design scalability in FPGA design [59, 15, 31, 31, 48, 17, 1]. In Kahn Processing

Network (KPN) [59], the basic compute kernels are abstracted as autonomous computing

stations connected in a network by communication links. Each autonomous station only
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processes the incoming data from the input links and produces data to the output links.

The autonomous stations are implemented in many works [95, 48, 86, 121, 122] by defining

streaming interfaces as the arguments for the functions. Since the interconnect links can

be mapped to FIFOs or relay stations [10, 120] in the hardware, it can isolate the critical

paths inside the autonomous stations, which avoids cross-station long wires and improves

timing [19, 31, 31].

Dynamically Scheduled Circuits (DSC) [56, 22, 55, 57, 23, 58] have been brought forward

as a complementary for static scheduled HLS-generated circuits to improve performance

(clock latency). Both LIC and DSC use handshake interfaces (valid and ready) to connect

modules, but DSC targets finer-grain elastic components, such as elastic buffers, elastic

FIFOs, forks, branches, and so on, while LIC targets coarse-grain compute kernels. By

generating a particular form of latency-insensitive synchronous circuits, the conservative

unnecessary data dependency can be avoided during the execution time, improving the

performance at the cost of orders of magnitude area overhead. However, DSC can still be

regarded as the first step toward high-performance HLS design.

For this dissertation, we use KPN as our computing model, and we construct the appli-

cation as a cluster of autonomous C/C++ functions connected by streaming links (detailed

in Chapter 3.2). For each autonomous C/C++ function, we still use the traditional static

schedule HLS compiler (Vitis HLS) for better area efficiency.
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Chapter 3

Divide-and-Conquer Compilation

Reconfigurable devices allow developers to customize their applications with huge resource

flexibility and energy efficiency. However, the long compilation time hinders the broad de-

ployment of FPGAs. Whist vendors tools, such as SDSoC [129], Vitis [131], and OpenCL [54],

tend to improve the coding efficiency, the placement, routing, and bitstream generation

times are still getting increased since the physical scale of FPGA chips is increasing. FPGA

compilation is slow because the EDA tools compile the entire accelerators in a monolithic

way, where super-linear algorithms are adopted to find optimal solutions.

We argue that FPGA compilations can be greatly accelerated by adopting the good

strategy from software compilation: divide-and-conquer. In software, a large application

is described by small sub-functions written in different source files, which can be compiled

separately and linked back together at the end shown in Figure 3.1. Incremental compilation

is possible as only the modified files need to be recompiled later. For FPGAs, the separate

compilation is supported only at the RTL synthesis stage. Different Verilog modules can

be separately compiled depending on the thread numbers of the workstation. For the

implementation stage, the entire netlist is placed and routed in a monolithic way.

We present PRflow, a framework that uses partial reconfiguration and packet-switched

overlay network to isolate design components for separate compilations. Instead of mapping

applications directly to raw FPGAs, we divide the FPGA layout into numbers of partial

reconfigurable regions, which are connected by a packet-switched network through universal

streaming interfaces. The components for an application (C/Verilog files) can be mapped
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separately to different physical partial reconfigurable regions. As all the components com-

municate with others only via the NoC, these compilations are completely independent.

This is of great value, as the compilation of one application is not limited to one worksta-

tion but can be distributed to a cluster of servers on the cloud. Therefore, the speedup is

not limited by the number of threads of one workstation. The separate-mapped modules

can be linked together by configuring the packet-switched network on the chip in a software

manner without physically routing the interconnections again, similar to the linkage stage

in software compilation. In fact, the incremental compilation is naturally supported by

PRflow, as only the modified modules need to be recompiled within the specific PR regions.

The new PR implementation modules can be dynamically linked together by configuring

the NoC in seconds.

In this chapter, we begin with the compute model and introduce the basic terms for

PRflow. The commercial tools will be characterized first, as it determines how the PRflow

is designed. Next, we elaborate on the framework of PRflow, including PR region definition

and Packet-Switched Network-on-a-Chip (PSNoC) design. We will evaluate PRflow by

mapping Rosetta HLS benchmarks to Alveo U50 data-center card equipped with a Xilinx

XCU50 16nm FinFET+ FPGA.

3.1 Divide-and-Conquer with PR technique

3.1.1 Divide-and-Conquer Requirements

Divide-and-Conquer is a common strategy in software compilation. For instance, we usually

write different source files for different sub-functions for the C program. All the source files

can be compiled independently by gcc to objective files that are finally linked to make

an executable file (Figure 3.1). For incremental compilation, only the modified files are

recompiled and linked again to re-generate the executable file as the dashed blue box shows

in the dotted block in Figure 3.1. Consequently, the incremental compiles take much less

time than the initial compile.

Two key features for fast software compilation are separate compilations and quick link-
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age. Unfortunately, these two features are not well-supported by commercial FPGA tools.

While high-level synthesis and RTL synthesis now support separate compilations, the phys-

ical implementation (placement&routing) and bitstream generations, which are the most

time-consuming steps, can only be conducted in a monolithic way, shown in Figure 3.2.

Consequently, incremental compiles are not well-supported, especially for physical imple-

mentation3.

3Vivado supports the incremental implementation strategy, but some criteria must be met between current
and previous compilations: 1) 94% cell matching; 90% net matching; 3) WNS > -0.250ns [136].
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3.1.2 Separate Compiles with PR

To completely apply the divide-and-conquer strategy to hardware compilation, we need

to support separate physical implementation and bitstream generation in addition to HLS

and RTL synthesis. Partial Reconfiguration (PR) [50, 134] is a technique we can leverage

for two reasons. First, PR is a common feature widely supported by commercial FPGAs,

ensuring our methodology can be applied to most of the FPGAs. Second, PR can isolate

different hardware modules completely by defining separate partial reconfigurable regions,

where independent physical implementation and bitstream generation can be performed in

parallel [78].

3.1.3 Quick Linkage with a NoC

With pre-divided PR regions, we can isolate the physical implementation and bitstream

generation within each local area. However, different PR modules have to communicate

with each other via the interconnect wires on the static region, which are fixed for one PR

layout. These global interconnect wires have to be re-routed for different applications. To

overcome this limitation, we propose to use a Packet-Switched Network-on-a-Chip (PSNoC)

to connect the pre-defined PR regions with uniform interfaces. The topology we use is

Deflected Butterfly-Fat-tree (BFT) from [61, 62]. Instead of re-routing the global wires

for interconnection requirements, we pack output data into packets with a header, which

indicates where the packets should go. The PSNoC can dynamically route the packets to

the right destination according to the header information. In a sense, this PSNoC acts as

a hardware linkage.

3.2 Dataflow Composition Model

We assume a dataflow stream compute model based on Kahn Process Networks [31, 41,

15, 32]. The design is decomposed into computation or memory operators connected by

dataflow stream links. The stream links abstract away the timing and implementation

details so that each operator only processes the incoming data from the input stream links

and produces the processed data to the output stream links without the knowledge of the
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other operators. One operator is mapped exclusively to a pblock page. The stream links

make separate compilations for the pages possible. Variable latency in the interconnect

channels arises from the placement of the operators or the congestion on the PSNoC.

void flow_calc(hls::stream< ap_uint<32> > & Input_1,

                           hls::stream< ap_uint<32> > & Output_1){

#pragma HLS INTERFACE axis register port=Input_1

#pragma HLS INTERFACE axis port=Output_1

  ap_fixed<48,27> ts[6], buf[2];

  ap_uint<288> in_tmp, out_tmp;

  ap_fixed<32,13> out_tmp;

  FLOW_OUTER: for( int r=0; r<MAX_HEIGHT; r++){

    FLOW_INNER: for( int c=0; c<MAX_WIDTH; c++){

      INPUT_LOOP: for( int i=0; i<9; i++)

        in_tmp(i*32+31, i*32) = Input_1.read(); 

      INPUT_CONVERT: for( int i=0; i<6; i++)

        tensor[i] = in_tmp(48*i+47, 48*i);

      ap_fixed<96,56> t1 = (ap_fixed<96,56>) ts[0];

      ... /* data type conversion */

      ap_fixed<96,56> t6 = (ap_fixed<96,56>) ts[5];

      ap_fixed<96,56> denom  = t1 * t2 - t4 * t4;

      ap_fixed<96,56> numer0 = t6 * t4 - t5 * t2;

      ap_fixed<96,56> numer1 = t5 * t4 - t6 * t1;

      if(denom == 0){ buf[0] = 0;  buf[1] = 0}

      else{ buf[0] = numer0 / denom;

            buf[1] = numer1 / denom;}

      out_tmp = (ap_fixed<32,13>) buf[0];

      Output_1.write(out_tmp(31, 0));

      outputs = (ap_fixed<32,13>) buf[1];

      Output_1.write(out_tmp(31, 0)); 

}}}

void flow_calc(hls::stream< ap_uint<32>> & Input_1,

             hls::stream< ap_uint<32>> & Output_1);

#pragma target=HW  p_num=8
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                hls::stream< ap_uint<32> > & Output_1){

                                   

#pragma HLS INTERFACE axis register port=Input_1

#pragma HLS INTERFACE axis register port=Output_1

    hls::stream< ap_unit<32> > up1, up2, gx, gz;

    hls::stream< ap_unit<32> > wy, wx, pt, ty, tx;

    unpack(Input_1, up1, up2);

    grad_xy(up1, gx);

    grad_z(up2, gz);

    weight_y(gx, gz, wy);

    weight_x(wy, wx);

    product(wx, pt);

    tensor_y(pt, ty);

    tensor_x(ty, tx);

    flow_calc(tx, Output_1);

}}
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Figure 3.3: PRflow Code Discipline Example

There is some discipline required to design operators. Our discipline includes:

• hls::streams and associated API operations (Chapter 3.2.1) are used for all com-

munication.

• Operators are limited to 7 input streams and 7 output streams; this is not fundamen-

tal, but a particular system will need to pick some MAX STREAMS to support the

hardware design. This limit impacts the packet headers for the BFT.

• Operators should obey standard HLS prohibitions such as no allocation or recursion;

3.2.1 Streams

Code compiled to the FPGA using native Vitis HLS hls::stream implementation. Fig-

ure 3.3(d) Lines 11, 24, and 26 show how to use this class type to read and write data.
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3.2.2 Application Composition

We support a stylized discipline for the top-level composition of the operator graph along

with pragmas that specify where each operator is mapped. Top-level operator composi-

tion instantiates operators as function calls (See Figure 3.3(b)) and can be compiled with

Vitis HLS for a monolithic compilation; alternately, it can be compiled with our tools to

generate the linking graph needed to configure the PSNoC. An operator with mapping con-

trol directives is shown in Figure 3.3(a) Line 3. Each operator has a line with a target

specification. Changing the p num will change which page an operator is mapped to.

3.3 Framework

The basic idea of separate compilation is to divide the FPGA chip into a set of PR regions

with fixed size and map separate blocks in the user’s application to these PR regions in-

dependently (Figure 3.4). We call the physical partial configurable regions pages and the

logic we separately map to these PR regions operators. Once the mapping is completed,

separate bitstreams for corresponding pages are loaded onto the FPGA. A packet-switched

network is responsible for the communications between pages.
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3.3.1 Packet-Switched Network

We adopt a packet-switched network to connect different PR pages so that there is no need to

place and route any dedicated links between pages. The pblock page is easy to be configured

with the addresses for the destination downstream modules, and the interface logic wraps

output data with destination addresses as packets, which enter the packet-switched network.

We choose a deflection-routed, packet-switched network since it is lightweight on modern

FPGAs [62]. Specifically, we use Butterfly Fat Tree (BFT) topology [77, 61], which can be

parameterized to generate versions with different internal bandwidths according to Rent’s

Rule [71].

3.3.2 Network Interface

The operators of the application communicate through a streaming interface. A page in-

terface is used to connect the operators to the deflection-routed packet-switched network

shown in Figure 3.5. The page interface includes input and output FIFOs that are used to

receive packets from BFT or send packets to the BFT. These FIFOs decouple the network

and user logic into 2 different clock domains so that they can run at different frequencies.

The minimal BFT does not deal with flow control nor the in-order transfer of the packets.

Therefore, we add sequence numbers to packets for ordering and design the page interface

logic the store the data from the BFT in order into FIFOs. The windowed acknowledgment

scheme [39] is adopted for flow control to avoid overwhelming the BFT with traffic conges-

tion. Since the page interface resides in the PR regions along with the user logic, it can be

tuned to adapt to use logic with different requirements, such as the number of input/output

ports, the depth of the FIFOs, and the window size for flow control. The packets include

the destination address, the port identifier, the sequence number, and the payload (data).

In this work, we use BFT with a packet width of 48 (5 bits for address, 4 bits for ports, 7

bits for sequence, and 32 bits for payload).
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3.3.3 Management, Processor, and Memory Interface

In addition to the pages for user logic, we also include host CPU and memory interfaces

connected to the BFT. For our previous implementations [123] on the Zynq device, one

node is connected to the on-chip ARM processor and another node is connected to the

memory interface (DMA engine). Currently, We use X86 CPU as a configuration controller

to replace the previous ARM processor. After all the partial bitstreams are loaded onto

the PR regions, the X86 host processor sends the configuration packets to each page to

configure the designation address for each output of the page. This process acts as the

linkage step for our framework.

3.4 Vendor Tool Characterization

Intuitively, we expect the implementation (placement and routing) time to be driven by the

number of the logic (LUTs, BRAM, DSPs) to be mapped and the physical layout (pblocks

in Vivado) the logic is mapped to. As mapping problems are NP-hard, heuristic algorithms

are usually adopted, which makes the mapping more complicated. By characterizing the

commercial EDA tool (Vivado) as a black box, we will see how the implementation time

is relative to the logic size and layout size. We initially assume that if the pblock size is

small (e.g., maybe 1-2 % of the total chip size), the implementation time would be reduced

commensurately.

We will see that Vivado is not designed perfectly to deliver the full benefit of separate

compilation with PR techniques. In this section, we will characterize the behavior of the

commercial EDA tool (Vivado), and use these rules to guide our PRflow mapping strategy.

For these experiments, we use Vivado 2022.1 running on a compute server equipped with

two 2.7 GHz Intel E5-2680 CPUs and 128 GB of RAM.

3.4.1 Page Size

We first define a PR region and sweep the PR region size from 3840 to 15360 LUTs for

ZCU102 Board (XCZU9EG), and 5,000 to 30,000 for Alveo U50 Data-center Card (XCU50)

to generate corresponding overlays. Next, we map designs of different sizes (mainly LUTs
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Table 3.1: Implementation Time vs. Design and Pblock Size On XCZU9EG (Unit: Seconds)

Design Size
Pblock Size (LUTs)

3840 5760 7680 10080 15360

Shifter Register

970 296 296 298 299 308
1977 314 309 310 311 320
2980 318 325 320 323 332
3980 X 340 333 336 342
4985 X 348 344 347 355
5989 X X 353 356 364
6992 X X 364 370 382
7983 X X X 379 395
8984 X X X 391 407
10005 X X X X 413

MicroBlaze Cores

940 315 315 321 318 322
1879 333 337 330 340 348
2818 347 360 353 357 363
3757 378 375 361 373 387
4696 X 380 380 390 401
5635 X 420 397 397 427
6574 X X 415 413 440
7513 X X 445 437 462

utilization) to one PR region of various sizes. In Tables 3.1 and 3.2, we see the compile time

is mainly driven by the size of the logic (LUTs number). When the pblock is large enough

compared with the mapped logic, increasing the pblock size does not have a big effect on

the compile time. For this experiment, we use two types of logic to map the PR region: one

is a shift register of various lengths; the second has a number of cascaded MicroBlazes.

From Figure 3.6, we see when pblock size increases to 15K, the compile time is not close

to the other cases. From Figure 3.7, we see when pblock size increases to 30K, the compile

time is not close to the other cases. Therefore, for device XCZC9EG, PR regions with a

size of around 10K LUT are good candidates. For device XCU50, PR regions with a size

of 20K LUTs are good candidates.

3.4.2 Partial Reconfiguration Compile

We call physical implementation within a PR region in-context implementation since some

of the routing resources in the PR region can be occupied by static logic. Before vision
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Table 3.2: Implementation Time vs. Design and Pblock Size On AU50 (Unit: Seconds)

Design Size
Pblocks Size(LUTs)

5568 9744 19952 30616

Shifter Registers

1974 928 918 929 1142
4974 950 924 978 1193
5974 X 943 969 1179
8974 X 997 1012 1243
9890 X X 1008 1231
14911 X X 1099 1291
19911 X X 1205 1348
20911 X X X 1344
24911 X X X 1370
29911 X X X 1448

MicroBlaze Cores

1947 972 957 979 1189
5703 1111 1058 1107 1290
6642 X 1086 1090 1294
7581 X 1124 1112 1329
8520 X 1148 1147 1381
9459 X 1201 1150 1391
10398 X X 1174 1392
15093 X X 1317 1507
19788 X X 1451 1569
20727 X X X 1600
24483 X X X 1661
25422 X X X 1680

2020.2, Vivado needs to load the database for the full chip and all the pre-implemented

logic in the static region, even though no decisions need to be made on where to place that

static logic and routing nets. If we are mapping the logic to one PR region, we should

assign minimum dummy logic to the other PR region, as all the dummy logic will be loaded

later. Figure 3.8 shows an experiment where we implement all the leaves with one 940 LUT

MicroBlaze [128] processor. We move various numbers of leaves to the static region to make

different overlays. Finally, we define all the logic pages and the BFT block as PR regions

in case 4.

For the device XCZC9EG mapping time, we only map one 940 LUT MicroBlaze proces-

sor again to Page 7. As we see in Figure 3.9, the mapping time decreases by moving move

the logic from static region to PR regions; the mapping time for the case 4 overlay is the
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least one.

For the device XCU50 mapping time, we only map one 1,947 LUT MicroBlaze processor

again to Page 7. As we see in Figure 3.10, the mapping time decreases by moving the logic
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from the static region to PR regions; the mapping time for the case 3 overlay is the least

one. We did not implement case 4 for device XCU50, because it is too complicated to

manually decompose the PSNoC on this larger device. For the XCU50 device, we see the

implementation time increase when we put more pages in the static by using the traditional

PR overlay, which seems contradictory to XCZU9EG. We think this is because we can

only use a level-1 PR region in XCU50 instead of a clean FPGA device. As Xilinx pre-

implements some firmware logic in the device, loading this logic dominates the compile time

over the benefit by putting more pages into PR regions. For the abstract shell overlay, we

see compilation time is much shorter than the traditional overlay, and decreases slightly

from 5 to 6 in Figure 3.10.

In summary, we should put as much logic as possible into the PR region to reduce

the logic to map for a single PR region implementation when using the traditional non-

abstract shell technique. Abstract shell technique can reduce the negative impact of static

logic.

3.4.3 Abstract Shell Variance

From Chapter 3.4.2, we see the abstract shell technique can strip away the majority of the

static logic and accelerate mapping time for a specific PR region. However, compile time is
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still possible to be affected by the static region, especially for those PR regions, which are

close to the heavily-congested static region. For this experiment, we map the same operator

coloringFB top with the size of 3910 LUTs to different PR regions on corresponding abstract

shell checkpoints. From Figure 3.11 (a), we see the mapping time is roughly proportional

to the abstract shell size. From Figure 3.11 (b), we see the pages close to the static shell

include more related logic and wires and have higher mapping time (Pages 8, 9, 10, 11, 12,

14).

Therefore, we should avoid using or defining dummy pages adjacent to the static shell

regions when we define the overlay with PR regions.

3.5 Toolflow

Figure 3.12 shows the toolflow for PRflow, which mainly includes host executable generation

and compilation coordination around Vitis HLS, Vivado RTL synthesis, and implementation

routines.

3.5.1 Prepare Synthesis

PRflow uses separate OoC (Out-of-Context) synthesis runs to compile each of the operators

into a netlist design checkpoint (.dcp) file. Our tool sets parameters and generates the

appropriate page interface (Chapter 3.3.2) for the operator based on its need (e.g., number
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of input and output streams). Overall operation is coordinated with a Python script. The

main steps executed in this phase are listed below.

1. Configuring the appropriate page interface;

2. Wrapping the user logic in C or Verilog with the page interface;

3. Creating TCL scripts to control synthesis runs;

4. Spawning the separate synthesis routines to cloud servers;

5. Result is a design checkpoint file.

3.5.2 Prepare Implementation

After the page blocks have been synthesized to netlist design checkpoints, our second phase

directs the separate physical implementation of each page block to a particular page pblock.

Based on a page assignment from the pragmas, a page implementation tool packages

up the design for implementation, including setting the pblocks that are not being mapped

in this separate compilation to dummy designs. It creates the TCL scripts to control the

implementation runs and spawns the implementation runs to cloud servers. The result of

the synthesis is a partial reconfiguration bitstream for the target page pblock.

3.5.3 Prepare Host Driver

Concurrent with the partial bitstream generations, we also prepare the host code, which

will be executed by an ARM processor (embedded platforms) or x86 CPU (data-center

platforms). Designs are expressed in C/C++ in units of operators (a, b, c, d, e), shown

in Figure 3.12. A top.cpp, which calls all the operator functions, is parsed by a python

script (dfg parser.py) to generate an OpenCL host driver code (host.cpp). The driver code

is responsible for sending configuration packets to configure the BFT NoC, setting up DMA

engines, launching app kernels, and interpreting the processed results.

For each stream link, the ARM/x86 processor sends control messages over the BFT to

configure the source and destination ports in the respective page interfaces, so that they

know each other’s location and port identifiers to construct packets.
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3.6 Benchmark Set

To evaluate our PRflow framework, we use the Rosetta HLS Benchmark suite [146], which

contains a diverse range of applications, including machine learning and image processing.

The original benchmarks are written for monolithic HLS compilation. We refactor the

code in the form of the latency-insensitive style in 3.2: we decompose the application into

separate operators and connect them by streaming links. The detail of each benchmark is

explained below.

3.6.1 Code Refactor

Rendering – This application renders 256×256 8 bits 2-D images from 3-D triangle coor-

dinates (3192 triangles per image). It mainly includes 5 pipeline kernel stages: projection,

raster1, raster2, zculling, and coloringFB. By applying dataflow HLS pragma in Vitis HLS,

these five stages can be executed in a Task-Level Parallel (TLP) fashion as shown in Fig-

ure 3.13(a). Intuitively, we decompose the rendering benchmark into five operators by only

changing the interface between different stages to stream links shown in Figure 3.13(b),

41



Distance w/ Training Set[18,000/P*1-1, 18,000/P*0]

Distance w/ Training Set[18,000/P*1-1, 18,000/P*0]0 0

Distance w/ Training Set[18,000/P*2-1, 18,000/P*1]

Distance w/ Training Set[18,000/P*3-1, 18,000/P*2]...

Distance w/ Training Set[18,000/P*P-1, 18,000/P*(P-1)]

Sorting 
P*K 

Candidates

Copy 
Input
Set

K Best Candidates
K Best Candidates

K Best 

Candidates

K Best 
Candidates...

...

(a) Data Level Parallel Execution Timeline for Hamming Distance Calculation

Distance w/ Training Set[18,000/P*2-1, 18,000/P*1]
Sorting 2*K 

Candidates
0 0

...

Distance w/ Training Set[18,000/P*P-1, 18,000/P*(P-1)]
Sorting 2*K 

Candidates
0

(b) Decompose Digit Recognition to Systolic Array for Task Level Parallelism

K Best Candidates,
Input Dataset[P]

K Best Candidates,
Input Dataset[P-1]

Result for
Input 

Dataset[0]
0

Figure 3.14: Digit Recognition Benchmark Decomposition

where all the operators are straightforwardly running in a TLP fashion.

Digit Recognition – This application is based on K-Nearest-Neighbour (KNN) algorithm.

A subset of MNIST database [33] was downsampled to 18,000 training and 2000 test samples

were stored as 196-bit unsigned integers per image. 18,000 196-bit images are stored on-

chip by BRAMs, and for each test image a Hamming distance is calculated for each training

sample. K training samples with the smallest Hamming distance are voted to decide the

final result. The Hamming distance calculation between the test input and each training
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sample dominates the workload. The original can perform XOR of 196 bits by one clock

cycle. However, calculating 18,000 times of Hamming distance per test input sequentially

is inefficient. To exploit data parallel, the original code partitions the training set by a

factor called PAR FACTOR (P) to calculate one input set with P training samples in parallel.

Finally, a voting module will sort K*P candidates from P partition results. Increasing P

can decrease the distance calculation cycles proportionally but increase the complexity of

the final sorting module. For our decomposed version, we still split the training set to P

operators. Yet, we connect the operators in a systolic array fashion. For the first operator,

it only outputs the best K candidates and transfers the input set to its consumer. For the

second operator, it still calculates the best K candidates with respect to its local training

samples. But a small sorting operation will be performed over 2*K candidates (extra K

candidates from its producer operator). For the final operator, its sorting module still

works on 2*K candidates and outputs the best result. Different operators are running with

task-level parallelism and the sorting module does not scale with partition factor P.

Spam Filter – This benchmark is a Logic Regression (LR) training model based on Stochas-

tic Gradient Descent (SGD). The dataset contains 5,000 emails, 4,500 for training and 500

for testing. Each email is represented by a 1024-element vector of 16-bit fixed-point values.

The training goal is to adjust 1024 32-bit fixed-point parameters by 5 epochs of 4,500 train-

ing samples. As the dot product operators are suitable for data parallelism, the original code

partition the features and parameters by a PAR FACTOR (P). As shown in Figure 3.15(a),

if we partition the features and parameters into 8 groups, 8 multiply operations can be

executed concurrently. For the decomposed version, we use to split the dotProduct and

paraUpdate modules into 8 groups. We store the parameters in 8 operators and split the

input features into these 8 operators to perform dotProduct. The intermediate results will

be added together to compute the gradient. Then the gradients are sent back to the 8

operators to update the local parameters. Therefore, there is a feedback loop from Sigmoid

to Dot Product Update Parameters operators, which would affect the performance when

the latency is high.
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Optical Flow – This benchmark compute graph is similar to Rendering as both can benefit

from Task-Level Parallelism (TPL) and it is straightforward to decompose in Figure 3.16(a).

We change the interface from array to stream links. As for PRflow, we have input buffer

and output buffer between pages and NoC, we do not need to explicitly add buffer between

different operators, shown in Figure 3.16(b). As gradient xy and gradient z have similar

operators, we merge these to into gradient xyz operator.

Face Detect – This benchmark is based on the Viola-Jones algorithm to detect faces from a

given 320×240 8-bit grey-scale image. It mainly includes 2 parts: an image scaling function

and cascaded classifiers. The image scaling function generates scaled images from an image

pyramid. Then a series of scaled images are fed into a cascaded classifier. A line buffer

containing 25 rows will be randomly accessed by different classifiers. Classifiers operate on a

sliding window of a 25×25 integral image. Theoretically, all the classifiers can be executed

in parallel. But the limited on-chip memory and routing resource only allow a limited

number of classifiers to run in parallel. In this example, the author parallelizes the first 3

stages of the classifiers (strong filters) and pipelines the rest 23 stages (weak filters). For

our decomposed version, it is important to keep the window images (e.g., Integral Images)

local to the classifiers. Based on this, we partition the line buffers and window images into 5

partitions in 5 operators. Accordingly, we split the strong filters into 5 operators according

to the data access. We copy the line buffers for the weak filters, and the line buffers into

5 partitions in 5 operators. Similarly, we split the weak classifiers into the corresponding

operators. As we finally need to sum up the results from the 5 partitions for both strong

filters and weak filters, a communications bottleneck may slow down the overall throughput.

BNN – This benchmark is a Binarized Neural Network (BNN) that originally fits small

FPGAs. It is based on the open-source implementation [145], which operates on CIFAR-10

dataset [67]. It contains 17 convolutional layers and 37 fully-connected layers. The main

workload of this benchmark is intensive of bit-wise logic operations. As the application

is compute-bound, the parameters are accessed from off-chip memory. The convolutional

layer and fully-connected layers are hardware parameterized, which means only 2 hardware
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kernels are implemented. These 2 kernels can run in a different mode according to the

input layer type. This is area efficient but can limit the performance. For our decomposed

version, we duplicate the convolutional layers according to the on-chip resource. We copy

the convolutional kernel 3 times: the first one maps the first 3 layers; the second one maps

the following 7 layers; the third one maps the last 6 layers. For the full-connected layers, the

execution cycles only occupy a small amount, which means there is no need to duplicate and

pipeline this stage. We make all the layers run in a task-level parallelism fashion, this means

different stages need to access the parameters concurrently and asynchronously. Therefore,

we move the parameters onto the chip as our target is AU50, which contains a significant

amount of on-chip memory to hold all the parameters. To improve the performance, we

can duplicate more stages of convolutional layers at the cost of more area.

3.6.2 Lines-of-Code

Table 3.3 summarizes the lines of code (LoC) comparisons between our baseline [146]

and refactored code for PRflow. We do not account for the duplicated pages, such as

docProduct 2--7 for spam filter and update knn2-10 for digit reg. For some benchmarks,

the coding style is quite different from the latency-insensitive form, so we put more effort

into refactoring the code, such as rendering and spam filter. Correspondingly, the LoC is

increased by higher factors. Nevertheless, some benchmarks are easy to refactor, as we only

need to change the interfaces for the sub-functions, such as optical flow.

Table 3.3: Interface Resource Consumption
Benchmark Baseline LoC [146] PRflow LoC LoC Increase

digit reg 141 204 1.4×
optical flow 403 485 1.2×
rendering 245 761 3.1×
spam filter 144 304 2.1×
face detect 2945 4188 1.4×

bnn 611 1127 1.8×
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Figure 3.17: Overlay Implementation

3.7 Implementations and Experiments

To evaluate the impact of PRflow framework, we use the Rosetta High-Level Synthesis

C++ Benchmarks for FPGAs [146]. We map the designs to the Alveo U50 Data Center

card [135] with a Virtex UltraScale+ XCU50 FPGA and 8 GB HBM. Subtracting the pre-

implemented firmware from Xilinx, a large PR region is available for the users (705,520

LUTs, 2,232 18Kb BRAMs, and 4,920 DSPs). PRflow uses Xilinx Vitis 2022.1 including

associated Vivado and Vitis HLS and XRT as the backend. We perform the mapping on a

cluster of 8 servers, each with 2.7GH Intel E5-2680 CPUs and 128GB of RAMs.

3.7.1 Overlay Implementation

To leverage the existing OpenCL driver from Xilinx Runtime [140], we first use Vitis to

compile a project with 7 kernels defined, shown in Figure 3.17(a). One of them is called

free-running kernel, which means that as long as the FPGA fabric is configured, it is running

immediately. The other 6 kernels are read1–3 and write1–3. For normal Vitis flow, it first

calls HLS to compile the C++ sources to Verilog files. Next, Vitis calls Vivado to synthesize

the Verilog files to one design checkpoint (DCP) file.

In Figure 3.18, we replace the Free Running Kernel with our overlay (separate process

unit + network) at Verilog level, which we call free running new. The equivalent system
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diagram is shown in Figure 3.17(b). Finally, the overlay diagram can be seen in Figure 3.19.

Correspondingly, our host driver only needs to launch the 6 memory kernels (read1–3,

write1–3) to run an application, shown in Algorithm 1.
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3.7.2 Design Points

For AU50, we use a 32-page BFT NoC with Rent parameter p=0.5 and a datapath width of

48 supporting 32 payloads. The Network and the PR pages are all running at 200MHz. As

one input and output are used for communication between a page and the NoC, the peak

bandwidth is 0.8GB/s in each direction. One endpoint is connected to Pseudo Channel

1 (PC1) or configuring the NoC. As the number of configuration packets is at most 224

50



Algorithm 1 Driver Code for the Host

1: procedure int main(int argc, char∗∗ argv)
2: Check Device and initiate Context
3: Configure the FPGA with Level-1 xclbin
4: for all xclbins do
5: Configure the FPGA with a Level-2 partial xclbin
6: end for
7:

8: Create an out-of-order queue
9: Initiate host memory and device memory

10: Launch Kernel read1 to configure BFT NoC
11: Launch Kernel write1 to read back info from BFT NoC
12: Wait for all kernels to be finished
13:

14: Launch Kernel read2 to configure BFT NoC
15: Launch Kernel write2 to read back info from BFT NoC
16:

17: while Not last debug Chunk do
18: Launch Kernel read3 to request debug info
19: Launch Kernel write3 to receive debug info from FPGA
20: Wait for write3 to be finished
21: Print out debug info
22: end while
23:

24: Wait for all kernels to be finished
25: Is Successful ← Check results()
26: return Is Successful
27: end procedure
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(7*2*32/2), the access range of PC1 is only 256MB, which is the smallest range. One

end node of the NoC is connected to Pseudo Channel 2 (PC2), which can access the HBM

memory of 8GB. One more endpoint is connected to Pseudo Channel 3 (PC3), which can

be used for delivering debug information later.

The page interface resource requirements scale with input ports, I, and output ports,

O.

Page Interface LUTs ≈ 206 + 66I + 227O (3.1)

Page Int. 36Kb BRAMs = 1 + 2I +O/2 (3.2)

We divide the FPGAs into 21 separate PR pages as shown in Figure 3.20. Each page is

connected to one endpoint of the BFT NoC. Due to the heterogeneous resource distribution

of modern FPGA, all the pages have similar but not exactly the same resource. There are 4

types of pages, and the resource detail is listed in Table 3.4. The total page-blocks occupy

62% of the LUTs, 85% of the BRAMs, and 65% of DSPs in customer logic (CL). PRflow

uses Hoplite BFT [62, 61, 36] for the packet-switched network, running at 200MHz with

32 data payloads. The page interface in each PR region allows the users to address by

specifying the header of each packet sent by the user logic.

Table 3.4: Resource Distribution
Page Type Type-1 Type-2 Type-3 Type-4

LUTs 21,240 17,464 18,880 24,920

FFs 43,200 35,520 38,400 49,840

BRAM18s 120 72 72 66

DSPs 168 120 144 176

Number 7 7 6 1

3.7.3 Compile Time
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Table 3.5: Rosetta Benchmark Time for all Pages(in seconds)

Benchmark operator page hls syn p&r bit total speedup

Benchmark operator page hls syn p&r bit total speedup

Continued on next page
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Table 3.5 – continued from previous page

Benchmark operator page hls syn p&r bit total speedup

digit reg

update knn1 13 51 123 476 55 659 13.98

update knn10 12 51 132 655 80 843 10.93

update knn2 4 51 100 428 55 584 15.77

update knn3 5 51 99 414 55 569 16.19

update knn4 6 48 100 397 56 551 16.72

update knn5 7 48 100 371 51 521 17.68

update knn6 14 49 100 604 68 758 12.15

update knn7 9 49 100 827 76 931 9.89

update knn8 10 50 104 752 78 897 10.27

update knn9 11 51 102 742 71 894 10.3

optical flow

flow calc 3 37 146 641 60 820 9.19

gradient weight x 4 35 92 458 54 586 12.86

gradient weight y 5 35 96 457 55 591 12.75

gradient xyz calc 6 34 78 380 51 492 15.32

merge 8 27 75 845 94 914 8.25

outer product 7 32 85 352 52 471 16

tensor weight x 9 38 93 888 80 974 7.74

tensor weight y 10 41 93 754 79 877 8.59

unpack 11 39 86 703 68 826 9.12

rendering

coloringFB 20 47 103 308 50 462 14.76

projection 21 20 76 284 48 385 17.71

rasterization1 22 22 93 285 47 403 16.92

rasterization2 23 22 82 290 50 399 17.09

read in 19 20 81 283 45 383 17.8

zculling 5 49 92 484 52 627 10.87

spam filter

Sigmoid axi 3 33 78 548 55 659 11.08

data 1 4 1 4 26 134 472 57 637 11.46

data 1 4 2 5 27 132 437 55 599 12.19

data 1 4 3 6 27 124 393 53 546 13.38

data 1 4 4 7 27 124 376 54 531 13.75

data 2 1 8 28 85 909 93 987 7.4

data in redir 9 31 98 856 80 946 7.72

dotProduct 1 10 31 93 752 77 866 8.43

dotProduct 2 11 36 92 750 70 876 8.34

dotProduct 3 12 38 90 686 87 828 8.82

dotProduct 4 13 35 90 446 52 577 12.66

dotProduct 5 14 39 94 645 69 781 9.35

Continued on next page
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Table 3.5 – continued from previous page

Benchmark operator page hls syn p&r bit total speedup

dotProduct 6 15 36 92 463 45 590 12.38

dotProduct 7 16 36 92 362 51 494 14.78

dotProduct 8 17 39 93 357 50 492 14.84

face detect

imageScaler bot 9 18 83 835 85 899 12.09

imageScaler top 4 19 87 419 57 532 20.43

sfilter0 5 78 335 548 60 964 11.27

sfilter1 6 83 151 632 60 869 12.51

sfilter2 7 87 156 559 60 806 13.49

sfilter3 3 77 181 793 66 1055 10.3

sfilter4 10 76 178 986 85 1228 8.85

strong classifier 11 38 168 949 74 1149 9.46

weak data 23 19 79 298 53 402 27.04

weak process new 12 31 244 830 85 1107 9.82

wfilter0 13 68 185 607 57 867 12.54

wfilter0 process 14 62 130 690 71 883 12.31

wfilter1 15 68 167 616 54 854 12.73

wfilter1 process 16 64 130 426 59 624 17.42

wfilter2 17 68 171 593 59 838 12.97

wfilter2 process 18 64 132 408 53 605 17.97

wfilter3 19 68 174 590 53 833 13.05

wfilter3 process 20 64 132 382 59 587 18.52

wfilter4 21 68 211 602 62 891 12.2

wfilter4 process 22 63 133 401 58 605 17.97

bnn

bc0 gen 0 15 26 71 336 45 433 22.05

bc1 gen 0 14 25 80 543 70 656 14.55

bc1 gen 1 11 26 81 671 69 775 12.32

bc2 gen 0 19 28 82 284 48 397 24.05

bc2 gen 1 9 27 85 841 81 913 10.46

bd gen 0 6 30 73 290 50 398 23.98

bd gen 1 7 29 83 294 52 413 23.11

bd gen 2 22 28 83 298 50 414 23.06

bd gen 3 23 28 85 292 54 413 23.11

bd gen 4 4 29 84 391 54 508 18.79

bd gen 5 3 28 81 521 58 631 15.13

bd gen 6 18 26 86 303 47 416 22.95

bd gen 7 17 26 85 318 49 432 22.1

bd gen 8 16 30 85 314 50 431 22.15

Continued on next page
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Table 3.5 – continued from previous page

Benchmark operator page hls syn p&r bit total speedup

bd gen 9 5 27 83 361 50 472 20.22

bin conv 0 20 231 832 419 58 1488 6.42

bin conv 1 21 204 714 387 55 1310 7.29

bin conv 2 7 191 264 443 54 900 10.61

bin dense 10 51 102 768 80 915 10.43

data transfer 12 26 84 685 80 803 11.89

fp conv 13 44 101 452 53 603 15.83

We initially compile the Rosetta benchmarks by only changing the interface to fit the AU50’s

high bandwidth with normal Vitis flow as our baseline. Then we compile the modified source

code with our PRflow framework and we summarize the results in Table 3.6 and Figure 3.21.

The detail for all the pages of the benchmark set is tabulated in Table 3.5. For the original

Vitis flow, we set the Vitis compile option vivado.synth.jobs and vivado.impl.jobs to

32, equal to the threads number of one server to make the best use of the server’s threads.

We see the compile time takes 2–3 hours for all the benchmarks. Noting that it still takes

more than 2 hours even for small benchmarks on large FPGAs (e.g., rendering and spam

filter), as Vitis needs to load the database for the full chip, which is not necessary to map

small applications.

For our PRflow, we see the compile time reduces to 11–24minutes, a factor of 6.4–10.9×

speedup. The compile time varies over different pages. Figure 3.22(a) shows the distribution

of the mapping time over all the pages for different benchmarks. Applications with the worst

mapping time of 24 minutes also have short mapping time for other pages (e.g., 8 minutes).

Therefore, the real incremental compile time is determined by which pages the designers

are tuning up. Designers can also deliberately separate the logic they are interested in into

a small operator, therefore accelerating the edit-error-debug turn. From Figure 3.22(a), we

see the median values for all the benchmarks are around 12 minutes. This means it is highly

possible that the users only need 12 minutes for every incremental compilation.

In Table 3.6, we can see the compile time speedups vary across different designs, and

we see better speedups for small benchmarks (e.g., rendering and digit recognition). This
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Figure 3.22: Operator Mapping Time for PRflow

is because the long fixed overhead to map large chips can dominate the compile time for

small benchmarks, while our PRflow overlay does not have such overhead. Meanwhile, we

expect to see similar compile times for both small and large designs. However, we see large

designs also take a longer time in PRflow. This is due to the uneven decomposition of the

benchmark.

Table 3.6: Rosetta Benchmark Compile Time (in seconds)

Vitis Flow with 32 Threads PRflow with 8 Threads for Each Operator

hls syn p&r bit total hls syn p&r bit total Speedup

digit reg 1091 3385 3823 911 9210 49 100 827 76 931 9.9

optical flow 216 3079 3389 853 7537 38 93 888 80 974 7.7

rendering 248 2875 2941 754 6818 49 92 484 52 627 10.9

spam filter 130 3036 3319 818 7303 28 85 909 93 987 7.4

face detect 618 3422 5920 909 10869 76 178 986 85 1228 8.9

bnn 1306 3346 3886 1008 9546 231 832 419 58 1488 6.4

3.7.4 Performance

Table 3.7 lists the performance between normal Vitis flow and PRflow. By separating

compile with PRflow, applications can run 1.1–11× slower than the normal Vitis flow.

Most slowdowns come from the limited bandwidth between pages and the BFT NoC. This

is partially due to our general overlay being designed to map a wide range of applications
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tuned for quick compilation and verification over high performance. For example, for the

optical flow benchmark, each operator can be compiled by the HLS tool with II equal to

1. This means any communication bandwidth loss can cause performance degradation.

Out BFT NoC can only provide 0.8GB/s (32-bits@200MHz), while it needs 7.2GB/s (288-

bits@200MHz) between outer product and tensor weight y operators. This theoretically

slows down the performance by a factor of 9 (11× slowdown by measurement).

Table 3.7: Rosetta Benchmark Performance
Vitis Flow PRflow x86 g++ Vitis Emu

Freq

(MHz)

Runtime

per input

Freq

(MHz)

Runtime

per input

Runtime

per input

Runtime

per input

digit reg 200 2.9 us 200 3.3 us 81.3 ms 90.6 s

optical flow 200 2.4 ms 200 26.6 ms 2.8 s 70.0 s

rendering 200 1.7 ms 200 2.6 ms 16.1 ms 671.0 ms

spam filter 200 16.9 ms 200 72.3 ms 354.8 ms 12.3 s

face detect 200 19.1 ms 200 125.0 ms 6.9 s 57.8 s

bnn 150 5.1 ms 200 7.1 ms 27.8 s 2074.0 s

We also compare our performance with Vitis Emulation and X86 simulation. We can

see the pure X86 simulation is much faster than Vitis Emulation. This might be due to

Vitis Emulation’s needing to mimic the OpenCL driver, which adds another layer on top of

the C++ compiles, while X86 can optimize the C++ program with the -O3 option for fast

execution. PRflow achieves substantial speedup over the X86 simulation or Vitis Emulation.

This provides quick running information for the hardware execution with around 10 minutes

compilation.

Figure 3.23 shows how the performance and compile-time compare among different

platforms and options. This shows PRflow provides more trade space between pure x86

software implementation and raw FPGA implementation. The developers have new control

options with fast edit-compile-debug turns with single source code.
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3.7.5 Area Evaluation

The area comparison breakdown between Vitis flow and PRflow is listed in Table 3.8. For

PRflow, we add up all the operators’ resource utilization, including the page interface and

the overlay size (around 40K LUTs). We see the resource utilization of Vitis flow has a higher

LUT utilization than Vitis flow since PRflow needs FIFOs at the input and output ports.

This can consume more BRAMs to implement the FIFOs and more LUTs to construct the

supporting logic. One promising solution is to decrease the FIFO depth until Vivado uses

distributed LUTs to implement these BRAMs. We can also use Relay Station [17, 19] or

Skid Buffer [98] to connect those operators instead of FIFOs. However, users need to be

careful when using streaming links with small depth because this might introduce deadlock

in dataflow graph applications.

3.8 Discussion

From the preliminary results in Chapter 3.7, we see the divide-and-conquer strategy can ef-

fectively reduce the compile times by factors of 6.4–10.9×. However, several limitations still
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Table 3.8: Rosetta Benchmark Area Consumption

Benchmark
Vitis Flow PRflow

LUT B18 DSP LUT B18 DSP PAGE#

digit reg 56293 368 1 82971 413 1 10

optical flow 24202 192 286 68455 199 286 9

rendering 12293 112 13 50909 153 9 6

spam filter 15262 40 224 90795 257 256 15

face detect 53672 194 97 213179 349 145 20

bnn 51626 1132 7 104675 1249 4 22

exist, such as manual intervention in source code, fixed page size, and low area utilization.

3.8.1 C++ Level Automation

To leverage the quick compilation by PRflow, users need to re-write the code into sepa-

rate operators connected by latency-insensitive links. This might leave some burden on the

users when a large-scale software project has been finely tuned by enough tuning. Het-

eroRefactor [72] is an excellent framework that can analyze the C/C++ code and monitors

FPGA-specific dynamic invariant to generate C/C++ code efficiently for HLS and RTL

implementations. Using pragmas or directives has been proven to be a potential solu-

tion [27, 114]. Instead of using hours to transfer a giant loop to a systolic array, our target

is to guide the HLS tool to quickly decompose more generic applications into separate

operators for later parallel compilations.

3.8.2 Bandwidth Bottleneck

From table 3.7, we see the performance is degraded by various factors. This is due to

the fixed limited bandwidth between pages and the NoC (0.8 GB/s). If some benchmarks

need high inter-page bandwidth (optical flow) or have more than one input/output ports,

the data are decomposed and queued up in units of 32-bits wide. We will propose several

solutions: Direct Wires in Chapter 4 and HiPR in Chapter 6.
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Table 3.9: PRflow Fragmentation for Rosetta Benchmark

Page#
Design Logic Page Logic Utilization

LUT B18 DSP LUT B18 DSP LUT B18 DSP

digit reg 10 43k 360 1 194k 804 1460 22.1% 44.7% 0.0%

optical flow 9 28k 146 286 172k 792 1296 16.5% 18.4% 22.0%

rendering 6 11k 100 9 123k 672 960 8.9% 14.8% 0.9%

spam filter 15 50k 204 256 288k 1212 2132 17.6% 16.8% 12.0%

face detect 20 173k 296 145 391k 1764 2924 44.2% 16.7% 4.9%

bnn 22 65k 1196 4 429k 1956 3212 15.1% 61.1% 0.1%

3.8.3 Fragmentation

As we use fixed pages to map separate operators for all the benchmarks, fragmentation does

exist as it is hard to utilize all the resources on one page. Table 3.9 shows the detail of the

fragmentation. While it consumes 11–173 k LUTs for the designs, it consumes 123–429 k

LUTs by using fixed pages to map. The utilization ratio varies from 8.92% to 44.26%. One

possible solution to solve this is to use a customized overlay to map different designs, which

will introduce some overhead for the initial compilation. Nevertheless, the fragmentation

issue can be solved to some extent still with a short mapping time.

3.8.4 Application-specific Overlay Automation

Currently, PRflow can map separate operators at the C/C++ level to fixed PR regions

at the layout level. However, the application can only be mapped when the operators are

smaller than the PR region. This does not fit the initial implementation scenario, where the

priority goal is to get an application to run and tune it up for later incremental refinement.

As the global bandwidth is limited by the NoC, merging certain operators can move global

data transmission to local internal data transfer. However, it is hard for a fixed page to

hold the merged giant operator. To overcome this limitation, we will introduce HiPR in

chapter 6.
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Table 3.10: Compile Time Comparison between Grid Severs and Modern Workstations (in
seconds)

2.7 GHz Intel E5-2680 3.7GHz AMD Ryzen 9-5900X

Vitis PRflow Vitis PRflow

hls 216 38 80 8

syn 3079 93 817 42

opt 314 197 120 57

place 1755 330 725 191

route 1320 234 634 61

bitgen 1320 234 634 61

total 7537 972 2733 385

3.8.5 Compilation Time on Modern Workstations

In Chapter 3.7.3, we compile the benchmarks on our servers, which are not the most ad-

vanced modern machines. We also compile Optical Flow benchmark on a more advanced

workstation equipped with 3.7GHz AMD Ryzen 9 5900X 12 Core CPU with 24 processing

threads and 128 GB of RAM. Table 3.10 and Figure 3.24 show the compilation time com-

parisons between server machines and modern workstations. We see modern workstations

can accelerate both Vitis and PRflow by around 2.7×. PRflow can finish the compilation

in around 6 minutes and still outperform standard Vitis flow by 7×.

3.9 Chapter Summary

PRflow offers users more design points between pure software simulation and raw FPGA

implementation. To complement the hours-long compile time, PRflow provides fast, native-

FPGA compile options that consume 20 minutes. The divide-and-conquer idea comes from

the separate compilation and linkage that are widely used by software compilers. PRflow

uses the streaming dataflow compute model, which abstracts away the detailed timing

and logic implementation, and an NoC, which dynamically links separate physical blocks

together without physical placement and routing. Combined with program deceptions in

C/C++ compiled by modern high-level synthesis tools, this provides a more familiar coding

environment for software developers. They can refine the C code, which can run both with
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Figure 3.24: Compile Time Comparison Between Grid Severs and Modern Workstations

x86 platforms and FPGA platforms. With PRflow -O1 option, developers can flexibly move

part of the entire program into FPGAs to evaluate the performance within 24 minutes. This

provides an essential ramp-up between pure software and complete hardware implementa-

tion. Furthermore, the short edit-compile-debug turns to enable more trial times so that

users are able to explore larger design space to obtain better performance. PRflow works

with modern data-center FPGAs and interfaces to hide the low-level details of physical im-

plementation, architecture, and CAD flow, providing an API closer to software compilation

and linkage for CPUs and GPUs.
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Chapter 4

More Bandwidth: Direct Wires

Direct point-to-point wires can be used to replace the Packet-Switched Network-on-a-Chip

(PSNoC) for fast linking of the split FPGA blocks, offering higher inter-page bandwidth to

improve the performance with less area overhead at no cost of compile time provided by

PRflow. In chapter 3, we show that separate compilation for FPGAs by using a pre-compiled

overlay can save compile time by 6.4–10.9×. A PSNoC is used to connect the separate

compiled FPGA blocks dynamically without hardware placement and routing. Nevertheless,

the lightweight PSNoC cannot meet the inter-page bandwidth for some critical links. In this

chapter, we will show how the bandwidth issue can be solved by direct wires (DW), where

the producer ports and consumer ports are connected directly by wires to take advantage of

abundant on-chip interconnect wires while preserving the quick compile by pre-defining PR

regions. The direct wires can reside in some PR regions compiled simultaneously with the

compute pages. Adjacent pages can be connected directly by fast links with low latency,

mapped directly to the pre-routed wires during the overlay generation stage. By mapping

the same benchmark as Chapter 3.7, DW can offer 1.1–10× performance improvement and

consume less 28–77% (LUTs) interface area overhead than PRflow.

4.1 Motivation

In this section, we will profile and quantify two issues in PRflow with PSNoC overlay:

bandwidth wastage and interface sharing area overhead. Next, we will characterize the

wire density of modern FPGAs by sweeping the number of wires to be routed over certain
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boundaries under different timing constraints. This can be regarded as an up-bound of

routing capability as routing is a global problem that can be easily affected by the real logic

to be mapped [103]. Along this line, we introduce our direct wire (DW) idea and the basic

techniques to support the implementation of DW (e.g., Skid Buffer/Relay Station, partition

pins, etc.).

4.2 Limitations of PRflow

4.2.1 IO Bottleneck
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unpack
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00
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tensor_y
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Figure 4.1: Optical Flow Decomposition with Datawidth Labeled

For the PRflow, we use a Packet-Switched Network-on-a-chip to connect separate FPGA

blocks (PR pages) together. A uniform streaming bus is provided at each endpoint of the

PSNoC for each page. As the bus between PSNoC and pages can only provide a fixed

bandwidth of 0.8GB/s (32 bits@200MHz), it partially explains the performance loss in

Table 3.7 for PRflow compared with normal Vitis Flow. When an operator has more than

one input port or output port, they have to share the IO throughput of 0.8GB/s. Moreover,

IO with large datawidth also causes data transmission to be queued up by 32 bits per cycle.

Figure 4.1 shows the optical flow design from Rosetta Benchmark [146]. The datawidth

of different links between operators varies depending on the specific computation. Some

pages can consume or produce more than 32 bits per cycle. However, due to the fixed

32 bits data bus, it takes multiple cycles to send or receive data but only consumes one

cycle to process the data. By profiling the consumed cycles for IO operations and compute
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Figure 4.2: Optical Flow: IO and Compute Operation Cycles

operations in Figure 4.2, we see the IO and compute operators are unbalanced, and in the

worst case, it can slow down the overlay performance by 9×.

In fact, we can profile the IO operations and compute operations for the benchmarks.

Theoretically, the overall performance of an application is determined by the maximum

of memory operations cycles and compute operation cycles. We use the normalized IO

cycles and compute cycles by equations 4.1 and 4.2. For one benchmark, we first find the

maximum compute operation cycles Max{AllComputeCycles} from all pages. Then we

normalized the compute operation cycles for all the pages by dividing this maximum one.

We also divide the IO operation cycles by this maximum compute operation cycle.

We profile the ratio between NormIoCycles and NormComputeCycles in Figure 4.3

for all the pages from the benchmark set. The black line means that the IO cycles are
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equal to the compute cycles for a page, which can be interpreted as the boundary between

compute-bound and memory-bound. When the points are above the black line, the overall

performance is limited by the slow IO operations on that page. It is especially worth noting

the cases where the normalized compute cycles are close to 0, but the normalized IO cycles

are high. This means the performance is significantly degraded by the IO operations (e.g.,

face detection and spam filter). Of course, we should also address the cases where the ratio

is significantly high (e.g., optical flow). Nevertheless, we see for most pages, the IO and

compute ratio is around 1 (Figure 4.4). This means only a limited number of pages have

such unbalanced IO and compute operation cycles, and there is no need to increase the

inter-page bandwidth for most cases.
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Figure 4.3: IO and Compute Operations for all Benchmarks)

NormComputeCycles =
ComputeCycles

Max{AllComputeCycles}
(4.1)
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NormIoCycles =
Max{InputCycles,OutputCycles}

Max{AllComputeCycles}
(4.2)
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Figure 4.4: IO and Compute Cycles Ratio Distribution)

4.2.2 Area Wastage

The protocol in PRflow is similar to TCP/IP [39], with which data are transmitted in

packets. Window buffer and the corresponding control logic are needed on both the output

and input sides for the user operators to support windowed acknowledgment discipline [26]

to guarantee that the PSNoC is not overwhelmed by too much traffic congestion. Moreover,

the packets may be received out-of-order from PSNoC, special order labels are added as

part of the header for each packet and re-order logic is necessary to store input packets into

the input buffer. PRflow uses 48 bits to deliver 32 bits payload data, consuming one-third

of the PSNoC bandwidth on the headers. As shown in Figure 3.5, the output ports need

dedicated FIFOs to buffer the output data before injecting them into PSNoC. A round-

robin multiplexer is used to share the only output bus to the PSNoC. For the input ports,

a de-multiplexer is adopted to split input packets to the buffer of each port. Table 4.1 lists
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the resource utilization with different IO numbers.

Table 4.1: Interface Resource Consumption

Overlay Type Instance LUTs FFs BRAM18s

PSNoC

Page interface 1 1076 526 7

Page interface 2 1962 822 11

Page interface 3 2764 1106 15

Page interface 4 3360 1390 19

Page interface 5 4121 1674 23

Page interface 6 4923 1963 27

Page interface 7 5746 2247 31

DW
Relay Station 37 66 0

Stream shell 71 38 1
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Figure 4.5: Interface LUTs Utilization for PSNoC and Direct Wires

Page interface with 1–7 inputs and outputs are listed in the first 7 rows. For direct wire

overlay, one pair of input and output needs one relay station [17, 19] and one stream shell

listed in the last two rows. In Figure 4.5, we can see the interface LUTs consumption is

roughly proportional to the IO pair number.

The PSNoC in Chapter 3 needs flow control logic to prevent packet loss by always

reserving enough space on the receiving buffer for incoming data. Therefore, links are always

initiated in pairs (one output port in the producer and one input port in the consumer).
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We propose to use direct wires to initiate these links. This might consume more resources

when IO numbers are high.

User 
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Figure 4.6: User Operator Wrapped with Relay Stations and Stream FIFOs

Instead of wrapping the user operator with a page interface, we propose to pack one

user logic with relay stations and stream FIFOs. For example, Figure 4.6 shows an operator

with 2 input and 2 output ports.

4.3 Direct Wires

We propose to use pre-compiled overlays with universal pages with direct wires stitched

together as shown in Figure 4.7. To map a dataflow graph with operators, we pack each

operator input port with a repay station to pipeline the input data and connect each output

port with a stream fifo. Each operator is mapped to a uniform page by a coarse grain

placer to meet the resource constraints. A coarse grain router is called to connect different

operators under limited route resources between different pages. As we use the latency-

insensitive model to prepare our application, extra relay stations can be added along the

links when they route through different uniform pages. For example, page c and page d

are connected across 2 extra pages. On each page, we add 2 relay stations to improve the

time. The idea of merging interconnect and logic can date back to system design [34] and

reconfigurable devices [9, 125, 79, 142]. We apply this idea to modern data-center FPGAs

by Partial Reconfiguration technique.

This interconnect-and-logic sharing scheme may need more pages to be recompiled as

different extra route-through logic may be inserted into a page even if the mapped operator

in that page is not modified. Nevertheless, we still admit parallel compilation, given enough

threads or cores by the cloud servers.
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4.4 Toolflow

The toolflow of direct wires is shown in Figure 4.8. The operators’ C source files are

compiled into Verilog files. Then an RTL synthesis is launched to compile the Verilog files
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to the design checkpoints. At this point, all the resource requirements for the operators are

available. The resource requirements and interconnect information are fed into our page

assigner to place the operators on the proper pages. Iterative routing is performed to make

sure the routing resource between two pages is not over-utilized.

We construct our page placer as Algorithm 2. We use Simulated Annealing to find

feasible places for all the operators. The variables and constants for the algorithm are listed

below.

PR := set of PR pages with < x, y > coordinates;

OP := set of operators to be placed;

W := width of the device in units of pages;

H := height of the device in units of pages;

T := set of tile types considered (CLB, BRAM, URAM, DSP);

rt := number of type t resources (t ∈ T );

L := set of all the links between 2 PR functions;

x := column coordinate for an operator or a page;

y := row coordinate for an operator or a page;

op := an operator (op ∈ O);

lopi,opj := number of interconnect wires between PR regions pri and prj (pr ∈ PR, l ∈ L);

The target is to find a unique pair of coordinates for each operator in equation 4.3.

∀i ∈ {0, 1, .., |OP | − 1},∀x ∈ {0, 1, ...,W − 1}, ∀y ∈ {0, 1, ...,H − 1}

opi →< x, y >

(4.3)

73



For the Simulated Annealing, We randomly select two pages for each Simulated Anneal-

ing iteration and swap the mapping status. If both pages are empty, we skip this iteration;

if both pages are mapped with operators, we swap the location of the 2 operators; if one is

empty and another page is mapped with an operator, we move the operator to the empty

page. The cost function is shown in Equation 4.4.

min : OverUsedResource+OverUsedWires (4.4)

The OverUsedResource is easily calculated by subtracting the operator resource from

the assigned page resource. If it is below zero, we set it to zero. To calculate

the OverUsedWires, we need to route all the streaming links. Fortunately, the scale of the

operators is orders of magnitude smaller than the bit-wise routing. Figure 4.9 illustrates a

naive router the placer uses for each iteration.
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Figure 4.9: Naive Router
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Algorithm 2 Direct Wires Page Placer

1: procedure PagePlacer(Overlay Parameters, Resource Requirements, Interconnec-
tion)

2: for operator in operators set do
3: Randomly generate < x, y > for operator
4: end for
5: T ← T0

6: CurrCost ← CostFunction()
7: MinCost ← CurrCost
8: while CurrCost > 1 do
9: i← 0

10: while i < TRIAL NUM do
11: Randomly select 2 page (pagej , pagek)
12: Swap the state of pagej and pagek
13: GreedyRoute(all operators)
14: df = CostFunction() - CurrCost
15: if df < 0 then
16: CurrCost ← CostFunction()
17: if CurrCost < MinCost then
18: CostMin ← CurrCost
19: Best Set of Operator Shape ← Current Set of Operator Shape
20: end if
21: else
22: if exp(-df

T
) > random possibility then

23: CurrCost ← CostFunction()
24: else
25: Swap the state of pagej and pagek
26: end if
27: end if
28: i← i+ 1
29: end while
30: T ← η×T
31: end while
32: if MinCost < 1 then
33: return The Best Set of Operator Coordinates and Routing Graph
34: else
35: return Fail
36: end if
37: end procedure
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4.5 Evaluation

We implement Direct Wires framework on top of PRflow in Chapter 3. We map Rosetta

High-Level Synthesis C++ Benchmarks for FPGAs [146]. We map the designs to the Alveo

U50 Data Center card [135] with a Virtex UltraScale+ XCU50 FPGA and 8 GB HBM. We

perform the mapping on a cluster of 8 servers, each with 2.7GH Intel E5-2680 CPUs and

128GB of RAMs by running Vitis 2022.1.

4.5.1 Overlay Design
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Figure 4.10: Direct Wires Overlay Implementation

Figure 4.10(a) illustrates the detail of the direct overlay. The adjacent pages are con-

nected by two sets of 300 wires. The two sets of wires have opposite directions. The biggest

challenging part is choosing the number of wires between pages. The IO bandwidth of

a page is 240Gbps (300×200MHz×4). Due to the heterogeneous resource distribution of

FPGAs, we define 4 types of pages. The page resource detail is shown in Figure 4.10(a).

The layout of the implementation on AU50 is shown in Figure 4.10(b). The left orange part

is the firmware used by Xilinx.
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Table 4.2: Rosetta Benchmark Performance on XCU50
Vitis Flow PRflow Direct Wires

Freq

(MHz)
Runtime

Freq

(MHz)
Runtime

Freq

(MHz)
Runtime

digit reg 200 2.9 us 200 3.3 us 200 3.0 us

optical flow 200 2.4 ms 200 26.6 ms 200 2.5 ms

rendering 200 1.5 ms 200 2.6 ms 200 1.5 ms

spam filter 200 16.8 ms 200 72.3 ms 200 19.9 ms

face detect 200 19.1 ms 200 125 ms † †
bnn 150 5.1 ms 200 7.1 ms 200 4.4 ms

† Face Detect cannot map due to routing congestion on a new device with a

new version of Vivado. It can be mapped with the previous ZCU102 platform

in [120].

4.5.2 Performance

Mapping the Rosetta HLS Benchmark [146] to direct wires overlay, we tabulate the perfor-

mance benefits in Table 4.2. The application runtime is listed in column fifth and seventh

for PRflow and Direct Wires framework. We can see Direct Wires overlay can improve the

performance by 1.1–10×. For optical flow, we increase the bandwidth between pages, which

improves the performance by 10×.

4.5.3 Parallel Compile Time

Table 4.3: Rosetta Benchmark Compile Time on XCU50 (in seconds)

Benchmark Vitis Flow
PRflow Direct Wires

Logic Page Speedup Logic Page Wire Page Speedup

digit reg 9120 931 9.8 929 758 9.8

optical flow 7537 974 7.7 922 507 8.2

rendering 6181 627 9.8 700 410 8.8

spam filter 7303 987 7.3 675 574 10.8

bnn 9546 1488 6.4 1829 472 5.2

face detect 10869 1228 8.8 † † †
† Face Detect cannot map due to routing congestion on a new device with a

new version of Vivado. It can be mapped with the previous ZCU102 platform

in [120].
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Table 4.3 tabulates the compilation time for different cases. We use Vitis as our baseline.

We see the DW compilation time is slightly longer than PRflow. This is because we placed

more IOs around the PR pages, which leads to more partition pins around the bounder.

This can add more placement and routing load for PR implementation. Nevertheless, we

can still see 5.2–10.8× speedup compared with standard Vitis Flow.

4.5.4 Area Overhead

Table 4.4: Application Resource Comparison – PSNoc Vs. DW on AU50

Benchmark Resource
PRflow Direct Wires

User Interface Totale User Interface Routing Total Inf Save†

digit reg

LUTs 36282 10206 46488 46285 1342 3226 50853 55.2%

FFs 35204 5386 40590 47481 760 2560 50801 38.4%

B18s 300 60 360 334 24 0 358 60.0%

DSPs 1 0 1 1 0 0 1 -

optical flow

LUTs 17550 10744 28294 17031 1213 6507 24751 28.1%

FFs 15788 8218 24006 19245 340 6379 25964 18.2%

B18s 84 62 146 92 52 0 144 16.1%

DSPs 286 0 286 286 0 0 286 -

rendering

LUTs 8728 10465 19193 8214 718 2612 11544 68.2%

FFs 9836 6011 15847 9840 263 2052 12155 61.5%

B18s 64 58 122 64 31 0 95 46.6%

DSPs 18 0 18 18 0 0 18 -

spam filter

LUTs 15099 35485 50584 15552 1073 6780 23405 77.9%

FFs 17030 16955 33985 18051 564 5017 23632 67.1%

B18s 10 194 204 10 65 0 75 66.5%

DSPs 256 0 256 256 0 0 256 -

bnn

LUTs 37449 24318 61767 36888 1699 5560 44147 70.1%

FFs 28983 11656 40639 28887 798 4609 34294 53.6%

B18s 1046 142 1188 595 63 0 668 55.6%

DSPs 4 0 4 4 0 0 4 -

† For Direct Wires, the interface overhead is calculated by adding

interface and routing resources. The interface of DW is compared with the

interface of PRflow.

Table 4.4 lists the detail of the resource consumption for PRflow and Direct Wires

framework. We can see the area overhead for the interface is reduced by 28–77% (LUTs).
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This means as we leave more space for the user logic instead of the interface.

4.6 Discussion

4.6.1 Fixed-Wiring Limitations

The pure DW gives up the complete virtualization of communication provided by the

PSNoC. That is, the DW solution depends on designs not requiring more user ports than

the overlay can support. One solution is to serialize lower bandwidth ports (e.g., provide a

logical 32b port with an 8b physical, DW path) to fit within pre-defined wiring constraints.

Another is to consider a hybrid network with a PSNoC for fallback after exhausting high-

speed DW capacity for the high throughput links.

When we encounter designs that require more ports than any overlay can support, this

suggests the need for a new overlay. Given an iterative development style, we can fall back

to the PSNoC, and this new overlay can be generated to support later revisions of the

design. Ideally, custom overlay generation would be automated, so that a new, suitable

overlay would become available in a few hours.

4.6.2 Higher clock Frequencies

For our overlay, we demonstrate our idea by using the clock frequency of 200MHz for our

overlay. The clock frequency is determined by sweeping the inter-page wire numbers and

clock frequencies to get the highest inter-page bandwidth without timing violation similar

to [120]. Modern FPGA fabrics are claimed to be able to run at high frequencies (e.g.,

600MHz). However, we find our benchmarks can seldom achieve the best performance

under the highest clock frequency. This is because vendor HLS compilers will add more

pipeline stages to meet higher clock frequencies which may make the execution time of an

application even worse. For example, an application can run at 200MHz by producing one

output per clock cycle, and it can also run at 250MHz by producing one output per 2 clock

cycles. In this scenario, lower clock frequency generates better performance. In the future,

we can generate different overlays with various clock frequencies and inter-page wires for

users to choose from, so that users can get the best performance for their designs.
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4.7 Conclusion

In this chapter, we show how to use the Direct Wires framework to exploit separate com-

pilation and linking for FPGA design. We show the link can be mapped by using real

wires instead of using Packet-Switched NoC to virtualize the communication. This can

improve inter-page bandwidth without degrading the performance due to the IO bottleneck

by PSNoC. As separate operators are compiled independently on their own pages, we can

still benefit from parallel compilation without sacrificing the application performance.
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Chapter 5

Fit Size Early: Soft Cores

We realize the divide-and-conquer compilation strategy in Chapter 3 and list two limitations

of PRflow: 1) the IO-bottleneck issue and 2) the size-fit issue. In Chapter 4, we present

Direct Wires to address the IO-bottleneck issue. In this chapter, we will show how to

partially resolve the size-fit issue by using soft cores.

5.1 Motivation

With the rise of high-quality C-to-gates HLS compilation, it is becoming viable to craft high-

performance FPGA-accelerated designs in C. However, just as arbitrary Verilog is not syn-

thesizable or efficient, arbitrary C won’t necessarily produce efficient and high-performance

FPGA accelerators. Nonetheless, it should be possible to incrementally refine an application

written in C to tune it properly for HLS to FPGA mapping. While incremental refinement

with frequent recompilation and testing is a solid strategy for software development, slow

(hour-long) monolithic FPGA compilation discourages or prevents rapid, incremental devel-

opment and tuning. To avoid slow simulation on CPU-based workstations, logic emulation is

an alternative for debugging and verification. [109, 4] propose to decompose the designs into

split components and partial crossbars or time-multiplexed networks to link the separate

components back together. However, these logic emulators did not achieve fast compilation

as our Direct Wires framework and sacrificed a magnitude of performance compared with

raw FPGAs. We present techniques and methodologies to allow incrementally refinement

of dataflow-coordinated C computations into efficient FPGA-mapped computations. In
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particular, we support (1) separate compilation and linkage of stream-connected dataflow

operators to avoid the need to recompile unchanged parts of the FPGA and (2) fast compi-

lation of the same C source to softcore processors that can be linked in place of the FPGA

logic and communicate uniformly over compatible stream links. C can be mapped to soft-

core processors quickly (<4 seconds) with no limitations on operator sizing beyond memory

capacity, allowing continuous, rapid validation of functional refinements [108]. Operators

can be moved to softcore for rapid, in-situ functional testing while FPGA logic is being re-

compiled. As operators are refined and sized for the FPGA logic, they can be incrementally

moved to the FPGA with short (10–20 minutes) compiles, even if parts of the applications

are still running on soft cores [44, 45].

5.2 DIRC: Dataflow Incremental Refinement of C

Based on the PRflow framework in Chapter 3, we take a further step to overcome the size-fit

issue, providing a path for Dataflow Incremental Refinement of C (DIRC) code that allows

the developer to gently migrate applications from pure software to hybrid or pure hardware

running on the FPGA. Development can proceed like software, retaining the ability to make

quick, incremental changes and always run the code after every change by mapping all the

operators to pre-compile RISC-V cores connected by our PSNoC, shown in Figure 5.1(a).

Here we call this compilation strategy -O0.

Next, we can move some operators into hardware pages, as shown in Figure 5.1(b).

If the operator is too big to fit in a target partial reconfiguration region, the developer

can refactor the operators to split the operation into multiple operators. If the operator

becomes the performance bottleneck, the developer can replicate the operator to increase

parallelism. These changes can all be performed as incremental refinements to the operator

C graph; graph nodes can always run on the softcore processors, with some nodes running

on the FPGA as the operators are sized appropriately. Finally, we seamlessly finish the

transition to PRflow implementation in Chapter 3, shown in Figure 5.1(c). Here we call

this compilation strategy -O1.
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Figure 5.1: Fast Incremental Mapping Strategy

83



This methodology provides the missing -O0 compilation strategy, familiar with software

that offers a quick, but possibly low-performance, compilation to allow testing and debug-

ging to proceed rapidly. It also provides separate compilation and linking familiar with the

software development. We further show that the ability to remap streams and operators to

processor cores enables more software-like instrumentation and debugging (Chapter 5.4).

We provide an open-source release for our dirc riscv implementations on github4.

5.3 Operator Discipline

void flow_calc(hls::stream< ap_uint<32> > & Input_1,

                           hls::stream< ap_uint<32> > & Output_1){

#pragma HLS INTERFACE axis register port=Input_1

#pragma HLS INTERFACE axis port=Output_1

  ap_fixed<32,17> t[6], buf[2];

  FLOW_OUTER: for( int r=0; r<MAX_HEIGHT; r++){

    FLOW_INNER: for( int c=0; c<MAX_WIDTH; c++){

#ifdef RISCV

  printf("r=%d, c=%d", r, c);

#endif

      for( int i=0; i<6; i++) t[i](31, 0) = Input_1.read();

      ap_fixed<64,40> denom  = t[1] * t[2] - t[4] * t[4];

      ap_fixed<64, 40> numer0 = t[0] * t[4] - t[5] * t[2];

      ap_fixed<64, 40> numer1 = t[5] * t[4] - t[0] * t[1];

      if(denom == 0){ buf[0] = 0;  buf[1] = 0;}

      else{ buf[0] = numer0 / denom;

            buf[1] = numer1 / denom;}

      Output_1.write(buf[0]); 

void flow_calc(hls::stream< ap_uint<32> > & Input_1,

             hls::stream< ap_uint<32>> & Output_1);

#pragma target=HW  p_num=8

//#pragma target=RISCV p_num=8
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(a) Operator Header: flow_calc.hpp

                hls::stream< ap_uint<32> > & Output_1){

                                   

#pragma HLS INTERFACE axis register port=Input_1

#pragma HLS INTERFACE axis register port=Output_1

    hls::stream< ap_unit<32> > up1, up2, gx, gz;

    hls::stream< ap_unit<32> > wy, ty, tx;

    unpack(Input_1, up1, up2);

    grad_xy(up1, gx);

    grad_z(up2, gz);

    weight_y(gx, gz, wy);

    tensor_y(wy, ty);

    tensor_x(ty, tx);

    flow_calc(tx, Output_1);

}}
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      Output_1.write(buf[1]); 

}}}

Figure 5.2: Code Discipline Example

There is some discipline required to design operators that are mutually compatible with

the processor cores and the FPGA fabric. Our discipline includes:

• hls::streams and associated API operations (Chapter 5.3.1) are used for all com-

munication.

• Operators are limited to 6 input streams and 6 output streams; this is not fundamen-

tal, but a particular system will need to pick some MAX STREAMS to support in

4https://github.com/icgrp/pld2022.git
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the hardware design. This limit impacts both the packet headers for the BFT and

the buffers and control allocated for the softcore processors.

• Operators should obey standard HLS prohibitions such as no allocation or recursion;

if you want to exploit processor-only operations when they are on the processor, like

print, it should be guarded by suitable ifdef software macro guards (Figure 5.2(d),

Lines 8–10).

• Operators use a standard set of datatypes with compatible implementations for pro-

cessor and FPGA (e.g., ap int, ap fixed).

5.3.1 Streams

We provide a processor implementation of Vivado’s hls::stream [133] so that operators can

use a single, common stream API independent of where they are mapped. Our processor

streams are latency insensitive, similar to the Vivado versions. Code compiled to the FPGA

using native Vitis HLS hls::stream implementation. Figure 5.2(d) Lines 11, 18, and 19

show how to use this class type to read and write data.

5.3.2 Application Composition

We support a stylized discipline for the top-level composition of the operator graph along

with pragmas that specify where each operator is mapped. Top-level operator composi-

tion instantiates operators as function calls (See Figure 5.2(b)) and can be compiled with

Vitis HLS for a monolithic compilation; alternately, it can be compiled with our tools to

generate the linking graph needed to configure the PSNoC. An operator with mapping

control directives is shown in Figure 5.2(a) Lines 3–4. Each operator has a line with a

target specification. Changing the target will change whether the page is loaded as a native

FPGA partial bitstream or a standard processor overlay loaded with a compiled processor

instruction stream.

Changing the target also sets up the compiler dependencies to build the appropriate

bitstream or instruction stream.
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5.4 Debugging

The ability to dynamically link in processor-mapped operators enables rapid inspection and

debugging [96, 53].

Initially, it allows us to move a single operator over to hardware for testing. The stream

links allow the software to feed the operator data and consume its results without additional

harness setup to run the operator.

If we have a mapped design where we encounter new bugs, we can move an operator

back to software for inspection and add printf statements just as we might use in software

debugging, shown in Figure 5.2(d) (Lines 8–10). The printed output will be wrapped as

debugging packets and sent back to the ARM controller/X86 CPU, which has FIFOs to

receive debugging packets from one RISC-V core. This is done without recompiling any

hardware since the connectivity over the PSNoC is configured with the configuration packets

over the NoC and does not require the recompilation of the neighbors of the operator to be

moved to software. Similarly, it is possible to interpose an operator in an existing stream link

by configuring the producer to send its data to the interposed operator and the interposed

operator to send its output to the original consumer. This interposed operator can then

be programmed to perform inspection and instrumentation, such as counting data tokens

or printing them out. The interposed operator can perform the role of an integrated logic

analyzer [130], again without the need to recompile the entire design. The interposed page

can also act as a larger data buffer. These token counts and stream inspection are often

useful in debugging deadlock scenarios that arise in dynamic dataflow streams [96].

5.5 Softcore Integration

We integrate RISC-V [92] processors at the BFT leaves (Figure 5.3) for our softcore proces-

sor targets. The RISC-V core configurations are pre-compiled into a partial reconfiguration

bitstream for each page position, so it is only necessary to load the page configuration, load

the instruction memory with the compiled RISC-V ELF contents (Chapter 5.5.5), and send

the associated page interface stream-linking configuration commands (Chapter 5.5.4) to re-
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link a freshly compiled processor-mapped operator. We typically remap operators between

native FPGA and softcore processor overlays to the same partial reconfiguration page so

that no changes or remapping is needed for the rest of the operators.

5.5.1 Processor Prototype Implementation

P
C

Ie
 t

o
/f

ro
m

 H
O

S
T

High Bandwidth Memory High Bandwidth Memory

S
ta

ti
c 

S
h

el
l

Linking Network

HBM Driver

Debug & 

Profile 

Logic

L
in

k
in

g
 N

et
w

o
rk

L
in

k
in

g
 N

et
w

o
rk

Binary 

Configure

Module

DMA 

Engine

Interface

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e

S
L

R
 1

S
L

R
 0

Interrupt 

& Reset 

Logic

Level-1 DFX Region Level-2 DFX Region Static Region

1 2 3

Figure 5.3: RISC-V Overlay

We start with a PicoRV32 soft processor [118] for the processor softcore overlay target.

We use the picorv32 with the integer multiplier enabled. This PicoRV32 provides a simple

native memory interface, running at 200MHz to match our BFT frequency. In this con-

figuration, the PicoRV32 needs 2,504 LUTs, which easily fits in our partial-reconfiguration

pages along with page interface logic. The PicoRV32 uses unified instruction and data

memory. We can equip the RISC-V core with different memory sizes according to our page

size and operators’ IO numbers. We support at most 192KB (96 BRAM18s) of instruction

memory.
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Figure 5.4: RISC-V Integration for One PR Page

5.5.2 Processor Integration

Using the native memory interface for RISC-V, we can easily manipulate the memory data

bus. We define memory address 0-0x0FFFFFFF as the instruction memory and data mem-

ory. We define memory address 0x10000004-0x10000018 as stream in ports and 0x10000020-

0x10000034 as the stream out ports. The mem valid and mem ready from the native mem-

ory interface can be utilized as handshake signals. By adding a hardware transfer module,

the 6 stream in/out ports can be used for the page interface to communicate with the

RISC-V cores (Figure 5.4).

5.5.3 Software Libraries

To take advantage of customization features, FPGA HLS C++ code often uses datatypes

from ap unit and ap fixed libraries. These arbitrary-precision variables can be mapped

to FPGA logic using minimum LUTs, rather than 32b or 64b datapaths on processors.

However, Xilinx ap unit and ap fixed libraries use more than the minimum number of bits

to represent these types, which can be a challenge when our partial reconfigurable pages

only have 48 or 96 BRAM18s. Therefore, we develop our own, more memory efficient,

ap unit and ap fixed libraries that are compatible with the existing Xilinx HLS C++

code. Mapping all the operators from Rosetta Benchmark, the ELF size is typically 32–64
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KB, consuming 16–32 BRAM18s.

5.5.4 Page Stream Linking

The overlay floorplan is shown in Figure 5.3. We use the same method to link the separated

PR pages back together as in Chapter 3. The embedded ARM processor controller/X86

CPU is responsible for sending configuration packets, which are generated according to

the top function shown in Figure 5.2(b). For each stream link, the ARM processor/X86

CPU will send the corresponding configuration packets over the BFT NoC to configure the

destination and source ports in the respective page interfaces.

5.5.5 Program Loading

For each RISC-V core on the partially reconfigurable page, we can download the ELF file

into the instruction memory via our BFT NoC. Our tool can automatically parse the header

file for each operator. As shown in Figure 5.2(a), if we enable Line 4, DIRC will compile

the RISC-V ELF file and convert the ELF file to C++ arrays, which will be included by the

ARM controller/X86 host CPU. It takes less than one second to send all the ELF arrays to

all the RISC-V cores.

5.6 Benchmark Evaluation

We map Rosetta High-Level Synthesis C++ benchmarks for FPGAs [146]. We map the

designs to the Alveo U50 data center card [135] with an UltraScale+ XCU50 FPGA and

8 GB HBM. We perform the mapping on a cluster of 8 servers, each with 2.7GH Intel

E5-2680 CPUs and 128GB of RAMs by running Vitis 2022.1.

We divide the chip into 21 user logic pages, a dedicated packet-switched network, and

one page that combines a portion of the packet-switched network with 1 DMA Engine

(Figure 5.3). We use a Hoplite BFT [61, 62] for the packet-switched network, running at

200MHz with 32b data payload. The interface page logic in each partial-reconfigurable page

allows the configuration of the consumer address by packets on the BFT network [123].

We map the full set of designs from the Rosetta Benchmark Suite [146]. Figure 5.5 shows

the compilation time for soft-cores distribution over all the pages from all full benchmark
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Table 5.1: Rosetta Benchmark Applications

Vitis Flow PRflow Soft Cores x86 Vitis Emu

Freq

(MHz)
Runtime

Freq

(MHz)
Runtime

Freq

(MHz)
Runtime Runtime Runtime

digit reg 200 2.9 us 200 5.4 us 200 137 s 81.3 ms 90.6 ms

optical flow 200 2.4 ms 200 26.6 ms 200 10935 s 2.8 s 70s

rendering 200 1.7 ms 200 2.6 ms 200 3 s 16.1 ms 671.0 ms

spam filter 200 16.9 ms 200 72.3 ms 200 752 s 354.8 ms 12.3 s

face detect 200 19.1 ms 200 125.0 ms 200 527 s 6.9 s 57.8 s

bnn 150 5.1 ms 200 7.1 ms 200 983 s 27.8 s 2074s

sets. We can see all the pages can be compiled into executable-format files within 4 seconds.

Table 5.1 reports the basic characterization of the benchmarks. Mapping all the op-

erators of the application to pure soft cores, we see the runtime is worse than X86 and

Vitis Emulation. This is predictable since the RISC-V cores we adopt are area-optimized,

not performance optimized: the CPU is not pipelined, and no floating-point multipliers

are available. Optical Flow suffers from a slow software floating-point implementation. In

Chapter 3.7.3, we see native FPGA page region mappings typically take 10 minutes, with

some taking up to 24 minutes. Figure 5.5 shows the ability to get up and running with soft-

core operator compiles in seconds and the ability to migrate individual operators to native

FPGA mappings in tens of minutes. The FPGA mappings can run in parallel with debug-

ging and regression on the softcore-mapped operator. Figure 5.6 shows the distribution of

throughput when mapping a single operator to the softcore processor and leaving the rest

of the operators mapped to the separately-compiled partial reconfiguration leaves. Except

Optical Flow, most cases can be executed with around 200 seconds, represented by the

median values in Figure 5.6(a). For Optical Flow benchmarks, the median value is around

500 seconds. 2 pages are the extreme cases where a large number of floating-point multipli-

ers are needed. Figure 5.6 also illustrates several things. Functionally, this illustrates the

interoperation of mixed designs, with part of the design on the processor cores and part

on native FPGA logic. The results directly represent fast remap debugging scenarios once

you have a complete design. The throughputs here are much closer to the full, separately-
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compiled partial reconfiguration page cases, since they are only bottlenecked by a single

processor-mapped page. Combined with the all-processor mapped case in Table. 5.1, this

provides a bracket on the performance one will see with mixed designs during development

where some operators are on the softcore processors and some have already migrated to

native FPGA implementations.

5.7 Discussion

This chapter shows how to use RISC-V cores to map operators to realize software first

for incremental development. However, the performance of the RISC-V cores is still poor

compared with X86 or FPGA accelerators. For the optical flow benchmark, we see the

total runtime is even longer than the FPGA compilation time. This is because our RISC-V

is a simple, lightweight version. We can speed up the execution by pipelining the RISC-V

cores as general CPUs. Additionally, some common hardware cores (e.g., floating point

multipliers, vector units [141], etc.) are also missing in our RISC-V CPUs. We believe the

performance of pure -O0 in this dissertation can be greatly improved by supporting these

common acceleration methods in CPU.

In addition, great efforts have been put into reducing the size of the ELF file to fit the

limited size of the on-chip BRAMs in PR regions. However, we cannot completely address

the issue when an array with a big length is utilized in an operator. One possible solution

is to use the on-chip BRAMs only as cache and use the PSNoC to access the big off-chip

DDR memory or HBM memory, which are usually several Gigabytes.

5.8 Conclusions

With a suitable dataflow coordination discipline, combining C-to-gates compilation, soft-

core processors, and separate compilation and linking, we can provide a better FPGA

development experience—one that is no longer dominated by long wait times for FPGA

synthesis-placement-and-routing. This supports a familiar incremental refinement design

style, where a functional design is always running and can be improved through a series of

small changes and fast edit-compile-debug turns. The key capability we add to enable this
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discipline is a producer/consumer-agnostic communication streaming discipline that sup-

ports both separate compilation and heterogeneous architectures (e.g., FPGA, Processor)

on either side of the communication stream. This allows us to compile C for the operator

quickly to processors to give an immediate (< 4 seconds) integration of a refined operator

and to compile C to a small partial reconfiguration region quickly (10 minutes) to migrate to

the FPGA. Operators mapped to processors can run with the separately-compiled regions

already mapped to the FPGA. In an incremental compilation and refinement development

style exploiting separate compilation and linking, once an operator has been migrated to

the FPGA, it need not be recompiled as other operators are developed and modified. The

methodology provides the missing -O0 and -O1 compiler optimization options to comple-

ment the existing best-effort option provided by monolithic FPGA compilation.
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Chapter 6

More Flexibility: Customizable PR Size

and Interconnect

Partial Reconfiguration (PR) is a key technique in the application design on modern FPGAs.

However, current PR tools heavily rely on the developers to manually conduct PR module

definition, floorplanning, and flow control at a very low level. In addition, the existing

PR tools do not consider High-Level-Synthesis (HLS) languages either, which is of great

interest to software developers. In Chapter 3, we propose PRflow, which is able to accelerate

the compilation by a factor of 6.4 – 10.9×. However, several limitations still exist: 1)

benchmarks cannot map unless the separate decomposed operators are small enough to

fit the fixed page sizes; 2) the split operators can only be connected by a BFT NoC with

limited bandwidth of 0.8GB/s, sometimes degrading the overall performance.

In this chapter, We propose HiPR5, an open-source framework6, to bridge the gap be-

tween HLS and PR. HiPR allows the developer to define partially reconfigurable C/C++

functions, instead of Verilog modules, to accelerate the FPGA incremental compilation and

automate the flow from C/C++ to bitstreams. We use a lightweight Simulated Annealing

(SA) floorplanner and show that it can produce high-quality PR floorplans an order of

magnitude faster than analytic methods. By mapping Rosetta HLS benchmarks, the incre-

mental compilation can be accelerated by 3.5–7.6× compared with standard Xilinx Vitis

5The initial version of HiPR has already been published as [121].
6https://github.com/icgrp/hipr
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Figure 6.1: Initial-Compile vs. Incremental-Compile with Vitis

flow without performance loss.

6.1 Design Requirements

Table 6.1: Initial-Compile vs. Incremental-Compile with Vitis (Seconds)

Initial-compile incremental-compile
Reduction

hls syn p&r bit total hls syn p&r bit total

digit reg 1091 3385 3823 911 9210 1111 1640 3707 897 7355 20.14%

optical flow 216 3079 3389 853 7537 219 1350 3358 837 5764 23.52%

rendering 248 2875 2941 754 6818 216 1020 2931 774 4941 27.53%

spam filter 130 3036 3319 818 7303 147 898 3193 792 5030 31.12%

face detect 618 3422 5920 909 10869 628 1637 5843 930 9038 16.85%

bnn 1306 3346 3886 1008 9546 1289 923 3866 984 7062 26.02%

To make FPGA more accessible to software developers, vendors have been developing

versatile tools, such as Vitis [131], SDSoC [129], and OpenCL [54], to decrease the coding

difficulties by supporting high-level languages (C/C++). While these solutions can improve
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coding productivity, the most time-consuming place-and-route step does not benefit from

these HLS tools. In fact, these long P&R step is not only necessary for the final few

iterations but along for every iteration over the entire developing stage. However, during

the initial developing stage, users tend to have more quick trials to get evaluations on

different optimization strategies. In a sense, developers may need only a small portion

of the design to be refined and re-compiled, and it is highly inefficient to re-compile the

whole design through bit-level placement and routing. Fig. 6.1 profiles the compilation time

breakdown to implement Rosetta benchmarks [146] on a data center card (Alveo U50) [135].

Synthesis usually takes more time for the initial compile (purple blocks) as some peripheral

modules are compiled once and can be reused in later incremental compile. However, by

changing one source file, we only see 17–32% reduction in the incremental compile times

listed in Table 6.1 column 12; it takes almost the same time for placement, routing, and

bitstream generation. In contrast, software applications can be compiled in a different way,

where only the modified source files need to be recompiled. This can save significant time

during incremental development, where it is common to change only a few functions at a

time. We raise the key question here: Can we compile the HLS source code incrementally,

like software, such that we only need to perform placement and routing on the portions of

the design that changes?

By using PRflow (Chapter 3), the incremental compile can be partially realized by

moving the logic to be refined to a page, so that we can perform partial recompile to

quickly get some runtime results. However, the limited inter-page bandwidth (0.8 GB/s)

can easily be a design bottleneck. Additionally, the fixed page size is not suitable for design

space exploration when more area is needed to explore better performance. For example,

applying unroll or pipeline pragma to a design can easily increase resource utilization by

several orders. The fixed-page overlay in PRflow cannot fit various resource requirements

for different designs.

Based on the factors above, we identify two design requirements.
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(1) High-Level Definition of Function to be Refined

Developers should be able to signify the logic to be refined at a higher level (C/C++),

which software programmers are familiar with. This high-level support can simplify the

design steps so that developers only need to modify the C/C++ code instead of manipulat-

ing Hardware Description Languages (HDL), which usually needs expertise in RTL design.

Pragmas/directives are potentially good solutions to guide the CAD tools to P&R on

FPGAs better. For the Xilinx Vitis tool, it only allows the users to signify whether a

certain function will be moved to FPGA for implementation but does not let the users

control physical implementations detail (e.g. layout shape, location, or reconfigurability).

We argue that there should be more connectivity between high-level languages and phys-

ical implementation. Specifically, users should be able to signify whether some functions

are reconfigurable and even provide shape constraints to guide the CAD tools for later

layout implementation. With this support, users can signify which functions are partially-

reconfigurable, so that only PR recompilation needs to be performed for later refinement.

(2) Customizable Overlay Automation

To overcome the low bandwidth and fixed-size page limitations in PRflow, the new frame-

work should have the ability to generate different PR overlays for different designs or require-

ments. For example, if one function is Partially Reconfigurable (PR), the new framework

should generate an exclusive pblock with the proper size to fit the corresponding hardware

logic. Additionally, the pblock definition should be elastic enough for later refinement. This

means it is possible to define a pblock that finally has 10 times LUTs than the initial require-

ments for later tuning up. The users can provide some parameters which can guide CAD

tools to reserve more space for later refinement. When multiple PR functions are needed,

the framework should also be able to handle the coarse-grain floorplan for the PR func-

tions and non-PR functions to generate area-efficient implementation under specific timing

constraints. All these supports should be automatic with the least manual intervention.
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6.2 Strategy

To satisfy the above requirements, we propose HiPR, which allows the developers to identify

the PR functions by using PR pragmas. HiPR assigns specific PR regions to meet the PR

function resource requirements, compiles interconnect and non-changing functions to the

static region, and compiles each function to its own PR region. As the interconnect wires

can be customized to fit the bandwidth requirement, no performance will be degraded as

previous frameworks [123, 122].

6.3 Compute Model: Mapping Input

The dataflow computational graph model [59, 19, 122, 31] has proven effective in isolating

kernels for separate compilation. For Kahn Processing Networks (KPN) [59], each kernel,

called an operator, is described by a C function in HiPR: the operator receives inputs and

sends outputs through latency-insensitive streams [17, 1]; reads to empty streams stall until

data become available.

The dataflow graph in our model is illustrated in Figure 6.2: 1) the design consists

of a cluster of operators; 2) different operators are connected by stream links. The code

snippet in Figure 6.3(a) presents how to describe the dataflow graph in a C program. The

operators should obey standard HLS prohibitions such as no allocation or recursion. The

interfaces are defined as streaming type (Figure. 6.3(c) Line 1-4). By calling the read()
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  b(a2b, b2d);

  c(a2c, c2d);

  d(b2d, c2d, d2e);

  a(Input_1, a2b, a2c);

  e(d2e, Output_1);

}

void top(hls::stream< ap_uint<32> > & Input_1,

  … /* stream link definitions */

  hls::stream< ap_uint<32> > a2b

             hls::stream< ap_uint<32> > & Output_1) {

#pragma HLS STREAM variable=a2c

  hls::stream< ap_uint<32> > c2d

  hls::stream< ap_uint<32> > a2c

#pragma HLS STREAM variable=c2d

  hls::stream< ap_uint<32> > d2e

#pragma HLS STREAM variable=a2b

void b(hls::stream< ap_uint<32> > & Input_1,

             hls::stream< ap_uint<32> > & Output_1) {

#pragma HLS INTERFACE axis register port=Output_1

  for(int r=0; r<MAX_NUM; r++) {

#pragma HLS INTERFACE axis register port=Input_1

    tmp_in(31, 0)=Input_1.read();

    ap_fixed<96, 56> t1 = (ap_fixed<96,56>) tmp_in;

    tmp_in(31, 0)=Input_1.read();

    ap_fixed<96, 56> t2 = (ap_fixed<96,56>) tmp_in;

  ap_fixed<48, 27> buf[2];

  ap_fixed <32, 13> tmp_in, tmp_out;

    … /* computation */

    tmp_out = (ap_fixed<32, 13>) (buf[0] + buf[1]);

    Output_1.write(tmp_out(31, 0));

}}

(c) C++ Source File for Operator  b(a) C++ Source File for Top Kernel
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  hls::stream< ap_uint<32> > b2d

Figure 6.3: Top and Operator C++ Code Prototype

function (Figure. 6.3(c) Line 8, 10), the operator waits for the valid input data. After all

the computations are completed, the operator sends the data out by calling the write()

function (Figure. 6.3(c) Line 14).

6.4 Fragmentation

By creating custom pages for each operator, HiPR can avoid some of the fragmentation

inherent in the one-size-fits-all, fixed-size pages of prior work [48, 123, 120, 122]. Pages can

be sized to include only the resources needed, avoiding the fragmentation that comes from

trying to allocate adequate resources to handle a wide variety of operators. For example,

operators that do not need DSPs can be given pages with no DSP columns, and pages can

be customized for operators that need a large number of DSPs. Furthermore, there is no

need to allocate regions exclusively to NoCs that will make some of the LUTS, BRAMs,

and DSPs inaccessible to compute pages.

However, the HiPR strategy of allocating a PR region that satisfies Xilinx’s partial
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reconfiguration constraints exclusively for each operator can still lead to fragmentation.

Since vertically-stacked PR regions within one clock region are not allowed, the minimum

granularity of resource allocation for the floorplan is one column wide and one clock region

height (hereafter referred to as a tile). Consequently, BRAMs must be allocated in blocks

of 24 BRAM18s on the UltraScale+ architecture leading to some fragmentation when the

number of BRAM18s needed is not a multiple of 24. For example, if we have an operator

that needs 25 BRAMs, this can lead to a fragmentation of 48% (23/(2*24)). Similar granu-

larity issues impact LUTS (60 LUT clock-height column quanta) and DSPs (24 clock-height

column quanta). Furthermore, since we allocate PR regions as a contiguous set of columns

to satisfy the constraints on LUTs, DSPs, and BRAMs for an operator, when the operator’s

mix of resources does not match the FPGA’s local mix of resources, extra columns of the

non-limiting resources may be included to get enough resources for the limiting resource.

6.5 High Level Partial Reconfiguration (HiPR)

As shown in Figure 6.1, it takes a different amount of time for initial-compile and incremental-

compile. However, incremental compilation can only save 17–32% compile time than initial-

compile. The key reason is that vendor tools have to place and route the entire design

monolithically. For HiPR, we also classify the compilations into 2 types: overlay-compile

and incremental-compile. Different from PRFlow, which only reuses a one-size-fit-all over-

lay (Figure 3.4), HiPR generates customized overlays for different applications shown in

Figure 6.4. Overlay-compile happens when we first map the design. Different operators are

compiled in parallel (High-Level-Synthesis and RTL-Synthesis). Based on the resource re-

port and pragmas/directives (indicating whether an operator is PR or non-PR), a floorplan

tool will generate location and PR constraints, which along with the post-synthesis netlists

are fed into vendor tools for overlay implementation. Consequently, a customized overlay

is generated, which can be re-used for later incremental compilation. The sizes for differ-

ent pages can vary depending on the initial resource and pragmas. Additionally, different

operators can be connected with real physical wires instead of an NoC, the bandwidth is
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achieved according to the need.

With the overlay generated before, the divide-and-conquer strategy can be applied to

incremental compilation. Separate physical implementations and bitstream generations in

addition to HLS and RTL synthesis are performed in parallel. As the initial size of certain

pages can be arbitrarily large (limited by the real device size), developers can tune these

operators up and perform partial compilation instead of implementing the whole design

again. If the size of the refined operators exceeds the size of the specified PR region,

an overlay compile needs to be conducted again. Also, as the interconnection between

different pages resides on the static region, an overlay compile is needed when changing the

interconnections as well.
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6.6 HiPR Toolflow

In this section, we will describe the implementation of the HiPR toolflow. We first briefly

summarize the Xilinx Vitis flow in Figure 6.5 as a normal example and list several drawbacks

of current vendor tools. Then we will elaborate on the HiPR toolflow in Figure 6.6.

6.6.1 Xilinx Compilation Flow

The basic inputs into Xilinx toolflow include a device deception kit, which specifies the

low-level device information, C/C++ source files for hardware kernels, and OpenCL source

files for host drivers.

Taking in all the C/C++ files as the inputs, vitis hls is called to generate app.xo file.

By executing the command v++ -link, the Xilinx objective file app.xo can be compiled

to an FPGA-loadable file app.xclbin. This step is equivalent to the combination of the

traditional compilation steps (RTL synthesis, technology mapping, placement, routing, and

bitstream generation), which is also the most time-consuming part. For the incremental
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Figure 6.6: HiPR Toolflow

compile, even if only a small portion of the hardware source file is modified, it still needs

to go through hls, syn, p&r, and bitgen to generate the final FPGA-loadable file. As we

showed before in Figure 6.1, incremental compile only saves some synthesis time but keeps

the p&r, bitgen almost the same. Unfortunately, this linkage step is not open for application

developers. Therefore, it is hard to perform incremental compile with the PR technique.

6.6.2 HiPR Compilation Flow

For HiPR, it takes the same input source as Xilinx Vitis: each operator is represented

by a C++ function; the PR pragma in the corresponding header file signifies whether the

function is partially reconfigurable (Fig. 6.3(b) Line 3). For the example in Figure 6.6, we

define operators a, b, c, and d as Partially Reconfigurable functions (PR-functions) and

operator e as a Non-Partially Reconfigurable function (NPR-function).

As described in Chapter 6.5, we classify the development compilation into 2 types:

overlay-compile and incremental-compile. For the overlay compile, shown in the blue dashed
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block in Figure 6.6, a Python-based module HiParser parses the top.cpp file and interprets

the connections between different operators. The hardware header files for corresponding

operators are also parsed by HiParse module to identify all the PR functions and all the

parsed information is stored in an XML file, which will be fed into another Python-based

module HiPlanner for floorplanning.

Concurrently, HiPR calls vitis hls and vivado for independent compilations for the

separate operators in parallel. The post-synthesis resource utilization of all the operators is

collected by HiPlanner for floorplanning. A Simulated Annealing algorithm is adopted to

floorplan the operators, and the generated PR.xdc, which defines the partial reconfigurable

regions and partially reconfigurable modules, is then fed into vivado to generate a partially

reconfigurable overlay. Finally, an overlay.xclbin is generated, which corresponds to

the post-routed device layout in Figure 6.7(a). For traditional PR flow without abstract

shell [134], a giant overlay (Fig. 6.7(b)), which contains the definition for all PR regions

and the static logic, is generated. All the information will be loaded even when only one

PR region needs re-implementation. This step can last 10-20 minutes for Alveo data-center

FPGAs. This will lengthen the entire implementation as well since more elements are

considered during the placement and routing steps.

With the abstract shell technique, independent abstract shell DCP files are generated for

PR functions to perform the in-context implementation. In this example, 4 abstract shell

DCP files are generated for the 4 PR functions (a, b, c, d). Figure 6.7(c) shows the abstract

shell for PR-function a, where only the connection wires and logic (yellow blocks) related to

that PR region are reserved. As a result, the post-synthesis netlists for corresponding PR-

functions can be placed and routed within the PR regions defined by their abstract shells

in parallel. As we use the same Vitis development platform (hw bb locked.dcp) released

by Xilinx [124], the separate xclbin files for operators a, b, c, d, can be loaded after the

overlay.xclbin are loaded for the final application execution.

The header files for the operators are important here as they signify whether the func-

tions/operators are partially reconfigurable. To accommodate the logic increase for the
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Figure 6.7: Overlay-compile vs. Incremental-compile

later refinement on the operators, we provide resource ratio pragma to guide HiPlanner to

assign extra resources than the operator initially needs. For example, in Fig. 6.3(b) Line 3,

we can see operator b is a partial reconfigurable function, and the ratio means the final re-

configurable region contains 4 times the CLBs, 2.4 times the BRAM, and 8 times the DSPs

than the initial resource requirement. This can help reserve enough space to accommodate

design growth, as the developer can change functionality, add code to fix bugs, and increase

parallelism. An application-specific overlay will finally be generated.

For incremental compilation, developers can refine the PR functions with quick compile

shown in the dashed orange block in Figure 6.6: only function a is modified, and this

function is recompiled by calling vitis hls and vivado. The post-synthesis design netlist

(a.dcp) is placed and routed within the PR region individually without touching other

parts of the chips shown in Figure 6.7(d).

Based on these dependencies, we write a makefile [42], which only launches necessary

compilations for the modified source files. Therefore, HiPR can run on a single machine,
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on which the parallelism depends on the local cores and memory size.

The independent compile strategy also enables compilations by a cluster of servers on the

cloud, while vendor tools can only run a single machine. We deploy Sun Grid Engine [94]

for task scheduling. HiPR generates proper scripts according to the dependencies and

submits the compilation jobs with qsub. If the existing PR regions cannot fit the increasing

operator size, the users can change the pragma in the header file, and HiPR will re-generate

the overlay by re-launching overlay-compile. Changing the streaming links between the

operators also lead to re-launching overlay-compile as well, since it affects the interconnect
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wires in static regions.

In summary, HiPR can launch two types of compilations based on needs. Initially,

HiPR launches overlay-compile according to the pragmas specified by users to generate an

application-customized overlay with PR regions defined for corresponding PR functions. For

later incremental compilation, users can refine the PR functions with quick PR compilation.

When the current overlay cannot fit the size or bandwidth requirements, users can launch

the overlay-compile again with new pragmas.

6.7 HiPlanner

The C++-based floorplan module (HiPlanner in Figure 6.6) is the key step to bridge HLS

and physical PR implementations. Various approaches have been proposed for floorplan-

ning [111, 100, 8, 105]. We adopt the traditional Simulated Annealing (SA) as our floorplan

engine since it runs faster than analytical methods [100, 105]. We also implemented the

MILP-based floorplanner according to [105] for detailed comparisons in Chapter 6.9.1.

6.7.1 Problem Formulation

Modern data-center FPGA devices can be described by Cartesian integer coordinates, as

shown in Figure 6.8, where the heterogeneous resource (i.e., CLB, DSPs, BRAMs, ...) are

usually distributed non-uniformly over the chip. Additionally, Vendors often reserve some

area for firmware implementation (shell logic in Alveo U50) and define a Level-1 DFX region

for the users (Custome Logic). The basic element of the floorplan is one column wide and

one clock region height (hereafter referred to as a tile). Vertically-stacked PR regions within

one clock region are not supported by Xilinx FPGAs.

HiPlanner takes in the resource requirements from HiParse and a device description

file, and produces a set of PR constraints (PR.xdc), which describes the size and location

of the PR regions. The constraint file (PR.xdc) is fed into vivado along with the logic

post-synthesis netlists to generate an overlay.

We model the FPGA device as a 2-dimension matrix, which contains columns of re-

sources (CLBs, Block RAMs, DSPs, and IOBs). We define the variables for our model as
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below:

W := width of the device in units of tiles;

H := height of the device in units of tiles;

T := set of tile types considered (CLB, BRAM, URAM, DSP);

F := set of forbidden areas;

PR := set of PR functions;

L := set of all the links between 2 PR functions;

x := rightmost column coordinate for a tile;

y := lowermost row coordinate for a tile;

w := width of a PR region in units of tiles; w is set to no less than 4 for routability;

h := height of a PR region in units of tiles;

a := an area represented by a 4-element vector < x, y, w, h >, where x, and y are the

lower-left coordinates for the region and w and h are the width and height of the

region;

f := an area that cannot be used by PR regions (f ∈ F ), such as < 10, 2, 3, 1 > and

< 10, 5, 3, 1 > in Figure 6.8;

rt := number of type t resources (t ∈ T );

lpri,prj := number of interconnect wires between PR regions pri and prj (pr ∈ PR, l ∈ L);

ldma := number of wires connected to DMA (Direct Memory Access). We assume only one

module drives DMA input and DMA output only drives another module;

GAP := number of columns between two PR regions when both occupy the same row.

108



We simplify the FGPA device based on the columnar architecture of modern FPGAs

by using a W -element resource vector <CLB, CLB, BRAM, BRAM, ... CLB, CLB> to

represent the resource distribution over one row. number of rows represents how many rows

of resources the chip has, which is also equivalent to the number of clock regions vertically.

Finally, invalid regions are represented by a set of 4-element vectors. The detail is listed in

Table 6.2. HiPlanner first reads in the simplified device file and then processes the floorplan

for all the operators with Simulated Annealing (SA) algorithm.

Table 6.2: Parameters to Describe a Device

Parameters Description

resource vector

A vector of resource types to represent the resource distribution

over one row. For the device in Figure 6.8, the resource vector

is <CLB, CLB, BRAM, CLB, CLB, DSP, CLB, CLB, BRAM,

CLB, CLB, DSP, CLB, CLB, CLB, CLB>.

number of rows
It represents how many rows of resources are on the chip. For the

device in Figure 6.8, the number of rows is 6.

invalid area

It represents a set of invalid areas, including forbidden and

firmware regions, represented by a 4-element vector. For the

device in Figure 6.8, it has 4 invalid areas: <10, 2, 3, 1>,

<10, 5, 3, 1>, <14, 3, 1, 2>, <15, 0, 2, 6>.

The goal of the HiPlanner is to find a set of non-overlapping areas aj :< xj , yj , wj , hj >

| j ∈ {0, .., |PR| − 1} to map all the PR functions pri ∈ PR| i ∈ {0, .., |PR| − 1}.

With the specified variables above, we compute the centroid coordinates of an area ai:

xcai = xai + wai/2 (6.1)

ycai = yai + hai/2 (6.2)

The Manhattan Distance is adopted to represent the wire length between 2 areas:

Mdistai,aj = |xcai − xcaj |+ |ycai − ycaj | (6.3)
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6.7.2 Objective Function

The main factors we consider in optimization objective functions are total wires length,

wastage areas, and PR function overlaps as below.

min : α ∗WLnorm + β ∗RWnorm + γ ∗OVnorm (α, β ≥ 0, γ ≥ 1, α+ β = 1) (6.4)

where α and β are weights for total wire length and resource wastage, respectively

and γ is the weight for overlapping PR regions; the sum of α and β is 1; WLnorm is

the normalized wire length; RWnorm is the normalized resource wastage; OVnorm is the

normalized overlapping area in units of tiles.

The absolute total wire length, WLabs, is computed as:

WLabs =
∑

pri,prj∈PR|i<j

Mdistai(pri),aj(prj) · lpri,prj +
∑

pri∈PR

Mdistdma,ai(pri) · ldma (6.5)

where pri and prj are 2 different PR functions; ai(pri) means area ai is assigned to PR

function pri. The first term represents the total number of wires for all the links between

PR regions, and the second term represents the number of wires between PR regions and

the static DMA regions.

The normalized total wire length is calculated as:

WLnorm =
WLabs

(|L|+ 2) ·max{lpri,prj |lpri,prj ∈ L, ldma} · (W +H)
(6.6)

where |L| + 2 represents the total link number plus one DMA input and one DMA

output; max{lpri,prj |lpri,prj ∈ L, ldma} represents the maximum width of all the links; W+H

represents the maximum Manhattan distance between two PR regions or between one PR

region and the DMA location. The normalized total wire length is less than 1.

110



The normalized resource wastage RWnorm is computed as:

RWnorm =
1

|PR| · |T |
∑

i∈{0,..|PR|−1}

∑
t∈T

rai,t − rpri,t
rchip,t

(6.7)

where rai,t represents resource type t in an area ai that is assigned to PR function pri;

rpri,t represents the number of resource type t for PR-function pri. The numerator means

the extra resource the PR region provides beyond what the PR functions really need. We

divide it by the total resources of the chip rchip,t and |PR| to guarantee that the normalized

resource wastage is also less than 1.

The normalized overlapping area is calculated as:

OVnorm =


0 if ∀ Ux,y ≤ 1;

1 + 1
|PR|·H·W

∑
x∈{0,..W−1}

∑
y∈{0,..H−1} Ux,y otherwise.

(6.8)

where Ux,y is equal to the number of PR functions that use tilex,y. By Equation 6.8,

the overlapped area term is normalized to (1, 2].

The sum of α and β is 1 and, γ is no less than 1. The floorplan is only legal when the

cost function is less than 1, as any overlapping areas will increase the overlapping term to

more than 1. Higher γ encourages our method to generate a legal floorplan more quickly.

6.7.3 Greedy PR Shape Generation

We use a greedy method to reshape the region to cover the required resources. For each PR

region a :< x, y, w, h >, when the x and y are determined, we will greedily include more

columns in the right direction by increasing w to meet the resource requirements, assuming

h = 1 initially. When x+w reaches W or the w/h is more than 80, we increase h by 1 and

start over from the previous greedy step again. Consequently, If y + h reaches H, we set

x and y all to 1 and start the previous greedy step again. This can provide access to the

whole chip resources.

Since the FPGA fabric is non-homogeneous, when we move a region from one x location
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Figure 6.9: PR Region Reshape on a Given Left-bottom Point

to another, the existing w, and h may not provide the needed resources. For example, in

Figure 6.9, assumes we need 4 tiles of CLBs, 2 tiles of DSPs, and 4 tiles of BRAMs. If our

left-bottom tile is < 3, 1 >, our final shape will be < 3, 1, 7, 2 >. If the start tile is < 4, 3 >,

intuitively the shape will be < 4, 3, 6, 4 >. Compared with the previous shape, we waste 8

tiles of CLBs, 2 tiles of DSPs adding to the fragmentation. To avoid extra resource wastage

on the left boundary region, after the resource requirements are met, we will increase the

x coordinate of the shape as long as the resource requirements can be met. By applying

this greedy reshaping strategy, the final shape is shown as the shaded area < 6, 3, 4, 4 > in

Figure 6.9.

Note that we need to obey more practical constraints as well. For example, the minimum

width for a PR region is 4-tiles. Also, for each PR region, we intentionally include 3 (GAP )
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more columns on the right and leave these 3 (GAP ) columns in the static region. This

extra space is reserved to route the wires between different PR regions.

With this greedy reshaping method, we only need to use Simulated Annealing to deter-

mine the lower-left coordinates for each operator.

6.7.4 XY Simulated Annealing (XYSA)

As the main goal of our Simulated Annealing algorithm is to generate proper x and y co-

ordinates for all the operators, we call our algorithm XYSA. As shown in Algorithm 3, the

inputs to HiPlanner are device parameters and resource requirements for all the operators.

For the initial point, we randomly generate the x and y coordinates for all the operators

and perform the greedy reshaping method to generate the PR shapes (Chapter 6.7.3). We

update the cost function and use this initial cost as the current cost. For the following sim-

ulated annealing steps, we randomly select one PR region, and randomly generate the new

x and y coordinates and refine the PR regions by using the greedy reshaping method above.

In fact, the PR regions can be represented as aj :< xj , yj , fw(xj , yj , pri), fh(xj , yj , pri) >,

as wj and hj are determined by the xj , yj and pri. After the shape of the operator is

determined, we update the cost function with the new set of PR regions. We accepted

the results if the cost function is improved or the calculated accepting possibility is greater

than the random possibility. For our implementation, x and y coordinates are the simu-

lated annealing targets since we believe this representation is simple and fast to run. By

using the variables we define in Chapter 6.7.1, our implementation can easily be extended

to support sequence pair [89, 111], which is another traditional representation in floorplan

and placement. We will compare our results with the sequence-pair-based Simulated An-

nealing algorithm (SQSA) and Mixed-Integer Linear Program (MILP) in Chapter 6.8.3 and

Chapter 6.8.4, respectively.

6.8 Design Metrics

In this section, we will profile the characterizations of XYSA algorithm first. Then, we

will compare our XYSA algorithm with other algorithms, such as Simulated Annealing
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Algorithm 3 Simulated Annealing Floorplanner (HiPlanner)

1: procedure HiPlanner(Device Parameters, Set of Resource Requirements for Opera-
tors)

2: for operator in operators set do
3: Randomly generate lower-left < x, y > for operator
4: Reshape(operator, < x, y >)
5: end for
6: T ← T0

7: CurrCost ← CostFunction()
8: MinCost ← CurrCost
9: while T > T MIN do

10: i← 0
11: while i < TRIAL NUM × log 1

η do
12: Randomly select an operator j
13: Randomly generate < xj , yj > for operatorj
14: Reshape(operatorj , < xj , yj >)
15: Move operatorj to < xj , yj >
16: df = CostFunction() - CurrCost
17: if df < 0 then
18: CurrCost ← CostFunction()
19: if CurrCost < MinCost then
20: CostMin ← CurrCost
21: Best Set of Operator Shape ← Current Set of Operator Shape
22: end if
23: else
24: if exp(-df

T
) > random possibility then

25: CurrCost ← CostFunction()
26: else
27: Reset operatorj to previous location
28: end if
29: end if
30: i← i+ 1
31: end while
32: T ← η×T
33: end while
34: if MinCost < 1 then
35: return the Best Set of Operator Shape
36: else
37: return Fail
38: end if
39: end procedure
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with Sequence Pair(SQSA) and Mixed-Integer Linear Programming method (MILP). As

not all the implementations are open-source, we implement different algorithms in C++

with similar variable definitions in chapter 6.7.1.

6.8.1 Benchmark Preparation

To characterize the XYSA algorithm, we use digit recognition (varying BRAM utiliza-

tion) from the Rosetta Benchmark Suite [146], as it is easy to tune the application resource

usage up and down.

Digit Recognition

Digit recognition is based on K-Nearest-Neighbour (KNN) algorithm. A subset of

MNIST database [33] was downsampled to N (N=18,000 in the original Rosetta Bench-

mark) training samples and 2000 test samples and stored as 196-bit unsigned integers per

image. N 196-bit images are stored on-chip by BRAMs and, for each test image, a Hamming

distance is calculated for each training sample. K training samples with the smallest Ham-

ming distances are voted to decide the final result. For our case, we use the full database [33]

of 196-bit images. We split the training set into a systolic/cascaded chain of operators. The

first operator calculates the best K candidates for the input testing sample and passes the

K best candidates along with the input test sample to its downstream operator. All the

operators in the middle vote to choose K best candidates from their local candidates and the

upstream K best candidates, and pass the best K candidates along with the testing sample

to the next stage. The final operator calculates the best candidate. All the operators are

running at a task-level pipelining or dataflow manner shown in Figure 6.10. By changing

the parameters below, we can generate different benchmark versions with various BRAM

utilization ratios of Alveo U50 in Table 6.3. In fact, a full database [33] only provides

N=60,000 training samples. We can still set N=83,200 in Table 6.3 since we can instan-

tiate more BRAMs when more training samples are ready later. Since we can only assign

BRAMs to the PR function in units of tiles (24 BRAM18s per column), we can barely in-

crease the utilization above 80%, especially when the page number is high. This is because
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Table 6.3: Digit Recognition Resource Utilization

case num p par BRAM Utilization

1 1280 20 1 17%

2 1280 20 2 18%

3 2560 20 1 31%

4 4480 20 1 46%

5 4480 20 2 61%

6 8320 20 1 76%

7 8320 20 2 90%

the datawidth for the training set is 196 bits, and the granularity of BRAMs increments for

each page is 11 BRAM18s (⌈19618 ⌉). If the total BRAM numbers for each page cannot be

divided by 24, some fragmentation issues will show up.

P : the number of decomposed pages;

PAR : the partition number of the training set within a page;

N : the total samples of the training set;

6.8.2 XYSA Characterization

Below lists the parameters for XY Simulated Annealing (XYSA) algorithm. In this section,

we will use digit recognition case 5 in Table 6.3 to show how these parameters affect

the quality of results (QoR) of XYSA.

T0 : the initial temperature for Simulated Annealing;

TRIAL NUM : the number of trials before the temperature is decreased by 10×;

T MIN : the frozen temperature;

η : the temperature decay ratio;

Initial Temperature – Figure 6.11 shows the cost function with different initial temper-

atures for XYSA. Figure 6.11(a) shows the cost functions for all temperatures converge
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Figure 6.10: Digit Recognition Benchmark Decomposition Automation

after running for 15 seconds. However, different initial temperatures can generate different

final cost functions. For Figure 6.11(b), we can see cost functions converge slowly in the

temperature range [1000, 1e-3], but converge quickly below 1e-3. This means the lower

temperature can accelerate the convergence for XYSA algorithm. Nevertheless, we believe

a higher initial temperature is useful to avoid being trapped in a local optimum. From

Figure 6.12, we can see when the initial temperature is below 1, XYSA may fail to find

legal floorplan results. Therefore, to guarantee that we can finally generate legal floorplan

results, we will set the initial temperature to 100 for the following experiments.

TRIAL NUM – We sweep the TRIAL NUM, the interval before the temperature is decreased
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Figure 6.11: XYSA Cost Function with Different Initial Temperature
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Figure 6.12: Final Cost Function with Different Initial Temperature – when the initial
temperature is less than 1, XYSA may fail to find a feasible solution

by 10× (per log-scale unit). From Figure 6.13(b), we see the cost function decreases faster

with temperature when we have more trials in each temperature range. When TRIAL NUM
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Figure 6.13: XYSA Cost Function with Different Initial Temperature

is 1e+7, we see the cost function converges most quickly. However, when we look at the

cost function versus runtime shown in Figure 6.13(a), we see the cost function converges

more slowly when TRIAL NUM is higher. This is because it takes more time at each tem-

perature with a higher TRIAL NUM. It is worth noting that too low TRIAL NUM (< 1e+4)

may make the floorplanner fail to find a legal solution, as shown in Figure 6.13(b). By

plotting the cost function with the TRIAL NUM in Figure 6.14, we see the higher TRIAL NUM

could slightly improve the final cost function. However, we see no significant improvement

when TRIAL NUM is bigger than 1e+6. Therefore, we prefer to use trial numbers of 1e+5 to

keep the floorplan process fast with a considerable low-cost function. In summary, we use

T0=100, and TRIAL NUM=1e+5 for further experiments.

6.8.3 Sequence-Pair Simulated Annealing

Sequence Pair is a classic representation for floorplanning [89]: a positive sequence (Γ+) and

a negative sequence (Γ−) are adopted to represent the relative locations between each pair
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of blocks. If block a is before block b in both Γ+ and Γ−, block a must be left of block b,

shown in Equation 6.9. If block a is before block b in Γ+ and after block b in Γ−, a must be

above b. Based on the relative locations for all the blocks, a directed and vertex-weighted

graph called a horizontal-constraint graph (GH) and a vertical-constraint graph (GV ) can

be constructed. The weight of GH and GV can be viewed as the width and height of a

block. By using the well-known longest path algorithm for vertex-weighted, directed acyclic

graphs, the absolute location coordinates can be calculated for all the blocks. Readers can

refer to [89] for a detailed explanation.

(Γ+ :< ..., a, ..., b... >,Γ− :< ..., a, ..., b... >)⇒ a is left of b (6.9)

(Γ+ :< ..., a, ..., b... >,Γ− :< ..., b, ..., a... >)⇒ a is above b (6.10)

We implemented the Sequence-Pair Simulated Annealing (SQSA) from [8] but extended

it to support PR constraints and forbidden areas for modern FPGAs. We first use the

longest path algorithm to determine the weights of GH . For the left-most block, we use a
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Figure 6.16: Routing Driven Floorplan

similar greedy reshaping strategy in Chapter 6.7.3 to determine the width and height of

the block. The width (w) and height (h) of the following blocks are determined by the

x and w of the blocks on their left. As the heights of all the blocks are determined after

updating GH , the weights of GV are determined, by which the y coordinates of all the

blocks can be easily calculated. These relative location representations can generate a more

compact outlined floorplan, as the right and upper blocks are always adjacent (which is not

necessarily true with XYSA) and determined by the left and lower blocks. However, this
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strategy might be inadequate to represent the rich space in optimizing inter-page link length.

In Figure 6.16, we can see different implementations represented by the same sequence pair

(Γ+ :< a, d, c, b, e >, Γ− :< a, b, c, d, e >). We assume d and e have heavy linking wires. If

we use longest path algorithm, we will get Figure 6.16(a) where block d is adjacent to block

a. However, if we move d in the right direction by certain tiles, d and e have a shorter

distance. This move cannot be represented by sequence pair but can be represented by

XYSA.

Figure 6.15 shows the difference between XYSA and SQSA algorithms. We see SQSA

converges more quickly than XYSA initially, as SQSA tends to generate compact floorplans.

Since SQSA has a smaller design space (e.g., SQSA can not represent the floorplan in

Figure 6.16(b)), XYSA will slightly outperform SQSA when the temperature is lower than

10e-5 shown in Figure 6.15. In terms of runtime, since it takes more time for SQSA to

update the floorplan and the cost function, we can see XYSA converges faster than SQSA

in Figure 6.15(a).

XYSA can generate cost functions with a negligible difference in a much shorter time

than SQSA. In Chapter 6.8.5, we will show that XYSA and SQSA generate similar quality

of results.

6.8.4 Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP) is another classic method in floorplanning. We

implement MILP model from FLORA [105] in C++ prototype and use Gurobi 9.5.1 [49]

for academia as our solver. We extend the original MILP to support modern devices in

Chapter 6.7.1. We define the extra variables and constraints below. Readers can refer

to [105] for the other constraints.

ai,y := binary variables set to 1 if and only if PRi occupies row y;

gi,j := binary variables set to 1 if and only if PRi is not to the left of PRj .
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∀ PRi, PRj | i < j, i, j ∈ {0, ...|PR| − 1}

xi + wi +GAP ≤ xj + gi,j ·W
(6.11)

∀ PRi, PRj | i < j, i, j ∈ {0, ...|PR| − 1}

xi ≥ xj + wj +GAP − (3− gi,j − ai,y − aj,y) ·W
(6.12)

where GAP represents the extra space in units of tiles between 2 PR regions when

both occupy the same clock row (same as XYSA in Chapter 6.7.1). Since it usually takes

significant time for MILP to reach optimal or even a feasible result, we set the maximum

runtime for the Gurobi solver as 24 hours and keep the other parameters as default. We use

a dashed horizontal line to extend the line after XYSA converges in Figure 6.17 to compare

the cost function between XYSA and MILP. We can see XYSA can converge an order of

magnitude faster than MILP. However, MILP will eventually outperform XYSA by 1% at

cost of hours runtime. We will show the improvement has a negligible impact on the quality

of results in Chapter 6.8.5.
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Figure 6.18: Compile Time and Timing Slack Vs. BRAM Utilization

6.8.5 Quality of Results

BRAM Utilization vs. Compile Time – Figures 6.18(a) (c) (e) show how BRAM

utilization affects the HiPR compiles time with different floorplan algorithms. For the
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compile time, we use the average compile time from all 20 pages. We see the compile time

is mainly driven by the clock frequencies since it takes more time to meet more strict timing

constraints. The average compile time with different floorplanners is similar. Therefore, we

believe XYSA can outperform MILP by an order of magnitude shorter execution time with

a similar page FPGA compile time. XYSA and SQSA also have similar compile times, but

XYSA can get a slightly smaller cost function with a faster execution time.

Table 6.4: Compile Time and Timing Slack with BRAM Utilization

BRAM

Util

50% 60% 70%

Cost Fmax / MHz Cost Fmax / MHz Cost Fmax / MHz

XYSA 0.01857 240 0.02124 240 0.03249 220

SQSA 0.01922 240 0.02144 150 0.03265 220

MILP 0.01842 240 0.01983 250 0.02426 220

BRAM Utilization vs. Timing Slack – Figures 6.18(b) (d) (f) show how BRAM

utilization affects the HiPR timing slack. We see the timing slack is related more to fre-

quency constraints than the BRAM utilization when the utilization is under 80%. When

BRAM utilization is 80%, HiPR fails to generate overlays. We see XYSA, SQSA, and MILP

have similar max clock frequencies in Table 6.4. Based on the facts above, the maximum

frequency HiPR with XYSA can achieve is around 200MHz to 250MHz.

6.9 Experimental Evaluations

We evaluate the compile time acceleration of our framework by implementing the realistic

Rosetta HLS benchmarks [146] on the Alveo U50 data center card [135] with a Virtex Ul-

traScale+ XCU50 FPGA and 8 GB HBM. Subtracting the pre-implemented firmware from

Xilinx, a large PR region is available for the users (705,520 LUTs, 2,232 18Kb BRAMs and

4,920 DSPs). HiPR uses Xilinx Vitis 2022.1, including associated Vivado and Vitis HLS

and XRT as the backend. We perform the compilation on a cluster of 8 servers. Each server is

equipped with two 2.7GHz Intel E5-2680 CPUs and 128GB of RAM (total of 8×2×8=128

cores).
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Figure 6.19: Floorplan Execution Time Comparison between XYSA and MILP
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Table 6.5: Floorplan Runtime (in seconds)

Bench

-mark

PR

#
LUT B18 DSP

Runtime (Seconds) Cost Function

XYSA
MILP

*

MILP

Optimal
XYSA

MILP

final

MILP

BestBd

Impro-

vement

3d

render
6 5742 88 9 7 40 110 0.051 0.043 0.043 27%

Digit

Recog
20 48875 359 1 10 8246 - 0.018 0.016 0.013 11%

Spam

Filter
15 18703 75 256 10 1364 - 0.012 0.01 0.006 17%

Optical

Flow
8 19432 143 286 7 397 109601 0.032 0.027 0.027 16%

Face

Detect
20 137758 268 141 13 28646 - 0.036 0.03 0.006 17%

Binary

NN
22 40546 1102 4 11 17110 - 0.018 0.016 0.009 11%

6.9.1 Floorplanner

Table 6.5 shows the comparison between HiPlanner (XYSA) and the state-of-the-art floor-

planner (MILP). The proposed SA-based floorplanner is implemented in a C++ prototype

(Chapter 6.7) and is compared to our implementation (Chapter 6.8.4) of the MILP floor-

planner [105] that already showed better results than [100] and [99]. However, since [105]

is only based on the Virtex-7 series and did not consider the hierarchical DFX features, we

enhanced it to support these features mentioned in Chapter 6.7.1.

From Table 6.5, we can see it takes less than 15 seconds (column 6) for XYSA to converge

to good results (column 9, XYSA Cost Function). For the MILP method, the runtime in

column 7 (MILP *) means the MILP methods reach the same results as XYSA. We can

see it takes more than 2 hours for MILP to generate similar results as XYSA when page

numbers are 15-22. Column 8 lists the runtime when MILP reaches the optimum or the

maximum runtime we set (48 hours). Only 3d-rendering and Optical flow can reach

optimality in 110 and 109,601 seconds. Column 10 lists the best results the MILP method

can get within 48 hours. Figure 6.19 shows how the cost function changes with runtimes
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between XYSA and MILP methods. Column 11 lists the predicted best bound MILP can

possibly reach (not achieved unless optical). It takes much more time for MILP to generate

similar results to XYSA when page numbers increase. Column 12 lists the improvements

by MILP over XYSA (11-27%).

Table 6.6: Rosetta Benchmarks Incremental-Compile Times (seconds)

Vitis Flow with 32 Threads HiPR with 8 Threads

hls syn p&r bit total hls syn p&r bit total Speedup

digit reg 1111 1640 3707 897 7355 42 94 867 98 969 7.6

optical flow 219 1350 3358 837 5764 17 59 781 97 823 7.0

rendering 216 1020 2931 774 4941 77 79 802 112 940 5.3

spam filter 147 898 3193 792 5030 17 58 737 97 781 6.4

bnn 1289 923 3866 984 7062 227 628 370 58 1230 5.7

face detect 628 1637 5843 930 9038 67 241 2267 70 2590 3.5
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Figure 6.20: Operators Mapping Time Distribution

6.9.2 Compilation Time and Performance

Incremental-Compile: The main goal of HiPR is to accelerate the incremental com-

pilation since only the modified functions need to be recompiled. Figure 6.20 shows the

compilation distribution for different operators over the full benchmark sets. The opera-

tors can be incrementally recompiled in 5-43 minutes. For all the benchmarks, the median

values are near 7–18 minutes. This means that in most cases, users can benefit from short
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Table 6.7: Rosetta Benchmarks Overlay-Compile Times (seconds)

Benchmark
Vitis Flow with 32 Threads HiPR with 32 Threads

hls syn p&r bit total syn p&r abs max op total overhead

digit reg 1091 3385 3823 911 9210 1107 6029 1378 833 9347 1.5%

optical flow 216 3079 3389 853 7537 1092 9005 1229 747 12073 60.2%

rendering 248 2875 2941 754 6818 1238 4264 1279 784 7565 11.0%

spam filter 130 3036 3319 818 7303 1101 16905 1270 706 19982 173.6%

bnn 1306 3346 3886 1008 9546 1166 24237 1394 375 27172 184.6%

face detect 618 3422 5920 909 10869 1102 9389 1339 2282 14112 29.8%

† Maximum compile time for all the operators minus the hls and syn time.

§ The overhead is calculated by dividing the total time difference between

HiPR and Vitis over the Vitis time.

incremental compilation to tune their target functions more efficiently. We can see that

incremental compilation can be improved by a factor of 3–23 (Figure 6.20(b)). Figure 6.21

shows the compilation time breakdown for all the benchmarks. We can see the place-and-

route time is accelerated most. Table 6.6 shows the detailed compilation time. For HiPR,

we choose the maximum compile time from all functions for each benchmark as the final

compilation time. Even with the worst case, HiPR can still outperform Vitis by 3.5–7.6×.

Table 6.8: Performance Comparison: Vitis vs. HiPR

Benchmark
Vitis Flow HiPR Flow

Freq (MHz) Runtime Freq (MHz) Runtime

Digit Recognition 250 2.3 us 250 2.6 us

Optical Flow 200 2.4 ms 200 2.2 ms

Rendering 200 1.5 ms 200 1.4 ms

Spam Filter 200 16.8 ms 200 19.1 ms

BNN 150 5.1 ms 150 4.8 ms

Face Detect 200 19.1 ms 200 23.0 ms

Overlay-Compile: When a benchmark is compiled the first time, it takes more time for

Vitis to compile peripheral modules, such as AXI bus, debugging logic, DMA/HBM driver

and others. For HiPR, it needs to implement an overlay with PR modules defined. In

Figure 6.22, we can see HiPR takes more time to generate the overlay for all the benchmarks,
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Figure 6.21: Incremental-Compile Breakdown

as the operators have to be placed and routed along with overlay generation. In Table 6.7

column 9, we choose the maximum value between overlay bitstream generation and abstract

shell generation, as they can be conducted simultaneously. It takes 1.5–184.6% overhead in

compile time to set the overlays up. However, this process is usually performed once, and

users can benefit from incremental compilations afterward.

Performance Comparison: Table 6.8 summarizes the performance between Vitis and

HiPR. As we rewrite the original code in latency-insensitive style (Chapter 6.3), the through-

put is slightly different from Vitis implementation performance. However, HiPR achieves

130



0 2000 4000 6000 8000 10000 12000
(a) digit_reg Compile Time / Seconds

Hi
PR

 O
ve

rla
y

Vit
is

Ap
p 1.5%

hls
syn
rdchk
opt
place
route
bitgen
abs_gen

0 2000 4000 6000 8000 10000 12000 14000 16000
(b) optical_flow Compile Time / Seconds

Hi
PR

 O
ve

rla
y

Vit
is

Ap
p 60.2%

hls
syn
rdchk
opt
place
route
bitgen
abs_gen

0 2000 4000 6000 8000 10000
(c) rendering Compile Time / Seconds

Hi
PR

 O
ve

rla
y

Vit
is

Ap
p 11.0%

hls
syn
rdchk
opt
place
route
bitgen
abs_gen

0 5000 10000 15000 20000 25000
(d) spam_filter Compile Time / Seconds

Hi
PR

 O
ve

rla
y

Vit
is

Ap
p 173.6%

hls
syn
rdchk
opt
place
route
bitgen
abs_gen

0 5000 10000 15000 20000 25000 30000 35000
(e) bnn Compile Time / Seconds

Hi
PR

 O
ve

rla
y

Vit
is

Ap
p 184.6%

hls
syn
rdchk
opt
place
route
bitgen
abs_gen

0 2500 5000 7500 10000 12500 15000 17500
(f) face_detect Compile Time / Seconds

Hi
PR

 O
ve

rla
y

Vit
is

Ap
p 29.8%

hls
syn
rdchk
opt
place
route
bitgen
abs_gen

Figure 6.22: Overlay-Compile Breakdown

the same frequency and performance as the original Vitis Flow. We also implement floorplan

generated by MILP and get a similar compile time and timing slack as XYSA.

Compared with PRflow in Chapter 3, HiPR can customize the overlay according to

applications. This can address two significant limitations – the fixed-page size issue and

the inter-page bandwidth issue. As HiPR can assign various PR blocks to PR opera-

tors/functions according to resource requirements, there is no need for the developers to

decompose their design to fit the fixed page size in PRflow. Also, HiPR allocates dedicated

links between operators and uses relay stations [1, 19] to meet the inter-page bandwidth
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instead of potentially being limited by the uniform low NoC bandwidth. Therefore, HiPR

does not degrade communication bandwidth, while delivering a similar short incremental

compile time as PRflow. Since it takes more time to map larger operators, developers have

the freedom to decompose their designs to accelerate compilation.

6.10 Conclusions

In this paper, we propose HiPR, a framework that allows users to define partially recon-

figurable C-functions instead of Verilog modules. This can greatly benefit the incremental

FPGA development, as only the modified functions are recompiled (place&route) without

waiting a long time for full recompilation. The experiments from Rosetta Benchmark im-

plementation show that HiPR can decrease the incremental-compilation time by a factor of

3.5–7.6× without performance loss or need to target fixed PR region sizes.
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Chapter 7

Prior Related Work and Our Future Work

7.1 Prior Closely-Related Work

For the FPGA compilation time, many methods and frameworks have been proposed.

The recent Xilinx-released open-source work RapidWright [73] is an excellent framework

that provides APIs to manipulate the low-level implementation (P&R). Except for bit-

stream generation, RapidWright can also support divide-and-conquer compilation. Based

on RapidWright, some compilation time acceleration methods are proposed, such as Rapid-

Stream [48], which can both accelerate the compilation time and boost the design frequency.

Our work differs from [73, 48] as we aim at separate compilation from HLS to bitstreams,

while [73, 48] need to stitch separate post-place&route netlists together and generate one

bitstream for a full device, which may limit the speedup, especially for larger devices.

To improve the FPGA coding experience, Cascade [104] and SYNERGY [70] are pro-

posed. They allow the application to run immediately in the form of simulations and hide

the compilation behind the execution. When hardware compilation is done, the application

can be executed by FPGA fabrics. Users only see the application is running faster without

knowing the details behind the framework. This method is similar to the transition from

-O0 (chapter 5 to -O1 (Chapter 3) by our work. However, our work support C/C++ inputs,

while Cascade and SYNERGY only support Verilog/VHDL inputs. We believe extending

Cascade and SYNERGY to support HLS C/C++ inputs would be a great complementary

part of our work to improve the FPGA programming experience.
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To bridge High-Level-Synthesis (HLS) to low-level implementation and bitstreams, we

see AutoBridge [47], AutoSA [114], RapidStream [48], etc. AutoBridge couples coarse-grain

floorplan with pipelining during the HLS stage. More layout-level information is provided

for HLS tools to generate RTL code with better timing performance. HiPR (Chapter 6) also

proposes to relate HLS code with low-level implementation. But HiPR aims to allow users

to define partially reconfigurable functions at the C/C++ level and automate the process

from HLS, PR modules floorplan, and partial bitstream generations, which can accelerate

the incremental compilation time for PR functions. Even though AutoBridge does not

consider PR, we believe some coarse-grain floorplan strategies from AutoBridge may be

borrowed to improve HiPR timing, which we leave as one of our future works. AutoSA

can relieve users from manual interference to automatically transmit HLS code to systolic

array architectures for FPGA implementation. Although not all applications are suitable

for systolic array implementation, AutoSA still provides a partial solution to one of our

future works (chapter 7.5) for auto-decomposition. The generated systolic arrays can be

mapped as pages in our PRflow to accelerate the compilation time.

7.2 What are solved and unsolved by this work?

This dissertation mainly presents different frameworks to implement divide-and-conquer

compilation strategy for FPGAs. PRflow (Chapter 3), DW (Chapter 4), and HiPR (Chap-

ter 6) can map pre-separated C/C++ applications to FPGAs in minutes, providing short

debug-edit-compile loops for users to get quick returns for design development. Softcore

(Chapter 5) allows users to map applications to a cluster of pre-compiled on-chip RISC-V

cores and enables on-chip debugging by supporting hardware prinf feature. PRflow and

DW support 200MHz constraints and fixed-size page mapping, while HiPR supports var-

ious frequencies and page sizes according to applications. All these demonstrate the first

steps toward full FPGA support for software developers, including separate compilation

strategies, quick linkage, and versatile performance-and-compile-time trade-offs.

Nonetheless, we note that compiling FPGA applications in a software manner is chal-
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lenging due to intrinsic spatial features. The major limitations and potential future work

include: 1) PR overhead of resource wastage and compile time; 2) soft cores performance

and memory shortage; 3) C/C++ auto-decomposition; 4) leverage the hard NoC on new

devices 5) scalability for larger devices.

7.3 PR Overhead of ResourceWastage and Compilation Time

In order to perform separate compilations, we leverage Partial Reconfiguration (PR) by

vendors, which is a mature off-the-shelf technique. However, PR itself has several limi-

tations. First, the implementations for partial reconfigurable regions must be performed

in-context, since static logic can use the routing resource in PR regions. It is hard for users

to precisely control how much routing resource can be utilized by static logic. If the routing

resource for certain scarce IPs (DSPs or BRAMs) is occupied by the static logic, those IPs

are blocked and unusable for later PR mapping. To fully resolve this problem, it is benefi-

cial to have a method to prevent static logic from using resources in PR regions. Previous

works OpenPR [107] propose to use a route blocker that uses all the routing resources in

the PR region such that static logic cannot use any wires from PR regions. Unfortunately,

this method can only work with ISE vendor tool, which has been completely replaced by

Vivado. Similar works are [69, 29].

Second, the scalability of PR compilation cannot easily be controlled by the users. Since

PR implementation has to take the wires occupied by static logic into account, the context

logic is related to both static logic and the number of PR regions in addition to the target

PR region itself. The abstract-shell technique can partially address this issue by only

reserving wires related to the target PR region [134]. However, the abstract shell design

checkpoint can inevitably be affected by the locations and the nearby logic. Symbiflow [93]

and RapidWright [73] are two excellent open-source tools that can both manipulate the

FPGA database to performance implementations on a portion of the entire FPGAs. Since

Symbiflow does not support all devices by vendors, and RapidWright is limited in generating

partial bitstreams, this dissertation does not leverage these tools. Nevertheless, we believe
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these tools can potentially improve the scalability of PR compile time when they become

more mature.

7.4 Faster Soft Cores and More Memory Options

This dissertation shows how to use RISC-V cores to map operators to realize software first

for incremental development. However, the performance of the RISC-V cores is still poor

compared with X86 or FPGA accelerators. For the optical flow benchmark, we see the

total runtime is even longer than the FPGA compilation time. This is because our RISC-V

is a simple lightweight version. We can speed up the execution by pipelining the RISC-V

cores as general CPUs. Additionally, some common hardware cores (e.g., floating point

multipliers, vector units [141], etc.) are also missing in our RISC-V CPUs. We believe the

performance of pure -O0 in this dissertation can be greatly improved by supporting these

common acceleration methods in CPU.

In addition, great efforts have been put into reducing the size of the ELF file to fit the

limited size of the on-chip BRAMs in PR regions. However, we cannot completely address

the issue when an array with a big length is utilized in an operator. One possible solution

is to use the on-chip BRAMs only as cache and use the PSNoC to access the big off-chip

DDR memory or HBM memory, which are usually several Gigabytes.

7.5 More Directives for Decomposition

Given an application written in the latency-insensitive model, this dissertation can handle

the back-end compilations from HLS to bitstreams generations. We leave the users to

prepare their code in a dataflow graph manner. However, this might add some burden on

the developers and impact the coding efficiency. We believe adding more directives/pragmas

to guide the tools to decompose the code into several small operators may be more efficient

for design space auto-exploration in the future. Some existing works may be potential

solutions, such as HeteroRefactor [72] and AutoSA [114]. It might be more interesting to

integrate more front-end compilers to automate compilation flow more efficiently.
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7.6 Hard NoC

The hardware embedded NoC is proposed in [2], which can increase the frequency by 10–

80%, and reduces utilization of long wires by 40%. Our work also used Packet-Switched-

Network-on-a-Chip (PSNoC) for spatial linkage to connect separately-compiled PR blocks

together in [95, 123], before Versal ACAP system [137] was released by Xilinx. The limited

bandwidth between the NoC and pages (0.8GB/s) may bring up some IO bottleneck issues,

which can partially be solved by using directed wires in Chapter 4 and dedicated links

in Chapter 6. The hard NoC system in Versal chips provides new opportunities for our

PRflow implementation. The NoC system includes NoC master units (NMUs), NoC slave

units (NSUs), and NoC packet switches (NPSs). Stacked Silicon Interconnect Technology

(SSIT) is employed for multi-SLR NoC inter-die bridges (NIDBs). The hard NoC can be

leveraged by PRflow to increase the inter-page bandwidth and save more resources for users.

7.7 Scalability for Larger Devices

Scalability for larger devices is an important feature of hardware compilation tools. Differ-

ent compilation frameworks proposed in this dissertation have different characteristics for

scalability.

For our -O0 (RISC-V) and -O1 (PR) options, the page compilation time should not

scale up with larger devices if we define the same page size (around 20K-LUTs). For the

inter-page connections, we use Packet-Switched NoC. There is no need for a good placement

algorithm; the only constraint is that operators should fit the sizes of the mapped pages.

The spatial linkage can be implemented by configuring the PSNoC. The configuration time

is determined by the number of configuration packets, which are proportional to the number

of streaming links to connect the operators. As it only takes one FPGA clock cycle (2–5 ns)

to send a configuration packet, the spatial linkage is unlikely to dominate compile time. The

overlay generation time can scale up since more pages can be pre-implemented on larger

devices. But this is a one-time overhead during the framework preparation for the new

devices and does not affect the compilation time for different applications.
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For our -O2 (Direct Wires), the compilation time for pages does not scale up if we use

the same page size (around 20K-LUTs) for larger devices. However, the page assignment for

all the operators can scale up super-linearly since we use the Simulated-Annealing algorithm

for operator placement and the greedy routing algorithm to find pipelined direct wires across

pages (chapter 4.4). With 24 pages defined on the Alveo U50 data-center FPGA, operator

assignment and pipeline wire routing can be completed within seconds. Currently, the page

assignment and operator routing are far from dominating the compilation time. Still, it is

worth employing proper algorithms to improve scalability in dealing with more pages on

larger devices in the future. For example, the bi-section [16] or mincut [38] have nearly

linear time related to the number of operators for the placement problem.

Since HiPR -O3 generates application-specific overlays, the compile time includes overlay-

compile time and incremental-compile time. Incremental-compile time for pages does not

scale up with devices. It is related to the initial size of the operators and the elastic resource

pragma (Figure 6.3(b) Line 3). For the overlay-compile time, the overlay placement&routing

has similar scalability as the vendor tools because it is implemented more like standard Vitis

flow. For the floorplan, we currently use a lightweight Simulated Annealing algorithm. The

floorplan time is around seconds for operator number around 20. When mapping larger

designs to larger devices, Simulated Annealing may not scale well. Using a proper floorplan

algorithm to map larger designs can be another future work to make HiPR work well on

larger devices.
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Chapter 8

Conclusion

A divide-and-conquer compilation framework (PRflow) is developed for accelerating FPGA

compilation, which splits a complete FPGA compilation into several independent partial

reconfiguration compilations. Specifically, we pre-define separate partial reconfiguration

blocks at the FPGA layout level and perform a one-time implementation to get an overlay

for later use. A packet-switched network-on-a-chip (PSNoC) is adopted to connect these

separate PR regions together with a uniform interface. For the applications, we encourage

developers to use the latency-insensitive model to prepare the source code. An applica-

tion is decomposed into separate operators, which are agnostic to each other and only

communicate with each other by streaming interfaces. Each operator only processes valid

in-comping data and flushes data out when its consumer is ready. Otherwise, the operator

stalls. Subsequently, the operators at C-level can be mapped in parallel to the separate

no-overlapping locations on an FPGA chip. By configuring the local registers on each page,

virtual connections can be set up by PSNoC without routing physical wires.

By mapping Rosetta HLS benchmarks [146], PRflow can accelerate the compilation 6.4–

10.9× than the state-of-the-art vendor tools. In terms of performance, we note that the

throughput of some benchmarks is degraded due to the limited fixed bandwidth of the NoC

(6.4Gbps), which we call the IO bottleneck. Additionally, applications may not run unless

all the decomposed operators can fit the fixed-page size. This size-fit issue may limit the

flexibility for development since developers usually start with an executable application and

perform refinement incrementally to optimize it.
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To address the IO bottleneck issue, we propose Direct Wires framework. Instead of

using PSNoC to connect separate blocks, the FPGA chip is divided into a grid of rectangle

blocks. Two adjacent rectangle blocks are connected by re-routed fixed wires. The key

design principle is to route a maximum number of wires under specific constraints for

later PR recompilation. A route-aware placement tool is developed to assign the separate

operators at C-level to the proper blocks without over-using the pre-routed fixed wires. By

mapping the same benchmarks, the performance can be improved by at most 10×, with a

similar compilation-time speedup as PRflow.

To address the size-fit issue, we extend the PRflow with soft cores support by pre-

compiling RISC-V cores for quick mapping. This can ensure that developers can start their

development with a runnable application without dedicated code decomposition. Both

RISC-V hardware and software libraries are customized mainly to constrain the ELF file to

be small enough to be mapped by the Block RAMs (BRAMs) within a page. The softcore

can also act as a debugging module interposed into the dataflow to redirect debugging

information from the hardware without re-implementing the applications. This hardware

print function is meaningful for on-chip debugging.

While Direct Wires and Softcore can partially address the IO-bottleneck and size-

fit issues, both have their limitations. For example, Softcores cannot provide hardware-

comparable performance, and Direct Wires still suffer from fixed-size page issues. To over-

come the above limitations, HiPR is proposed to help developers to generate customized

overlays for different applications. By using relay stations with arbitrary datawidth to

connect separate PR regions, performance will not be degraded by IO-bottleneck. With a

lightweight floorplanner, operators can be mapped to PR regions on demand. Users can de-

fine a ratio to deliberately assign larger PR regions for later refinement. With an acceptable

compilation time overhead to customize the overlay, both size and bandwidth requirements

can be met with similar incremental compilation as PRflow.

In conclusion, PRflow can accelerate the FPGA compilation from 2–3 hours (state-of-

the-art Vitis) to 10-24 minutes. We believe the divide-and-conquer compilation strategy
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can reduce the compilation time gap between FPGAs and general computing platforms,

making more developers embrace FPGAs for their applications.
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